
Merchant Documentation
Documentation

Release 0.09a

Team Agiliq

August 27, 2015

Contents

1 Welcome to Merchant’s documentation! 3
1.1 Welcome to Merchant’s documentation! . 3
1.2 Indices and tables . 8998
1.3 Merchant: Pluggable and Unified API for Payment Processors . 8998
1.4 Overview . 8998
1.5 Installing Merchant . 8999
1.6 Credit Card . 9000
1.7 Gateways . 9002
1.8 On-site Processing . 9004
1.9 Authorize.Net Gateway . 9004
1.10 Beanstream . 9005
1.11 Bitcoin Gateway . 9006
1.12 Braintree Payments Server to Server . 9006
1.13 Chargebee . 9008
1.14 eWay Gateway . 9009
1.15 Paylane Gateway . 9010
1.16 PayPal Gateway . 9011
1.17 Stripe Payments . 9012
1.18 WePay Payments . 9013
1.19 Off-site Processing . 9015
1.20 PayPal Website Payments Standard . 9016
1.21 WorldPay . 9018
1.22 Amazon Flexible Payment Service . 9019
1.23 Braintree Payments Transparent Redirect . 9021
1.24 Stripe Payment Integration . 9023
1.25 eWAY Payment Integration . 9024
1.26 Authorize.Net Direct Post Method . 9027
1.27 Signals . 9029
1.28 Writing a new gateway . 9029
1.29 Customizing Merchant . 9030
1.30 Contributing to Merchant . 9031
1.31 Changes . 9031

2 Indices and tables 9035

3 Merchant: Pluggable and Unified API for Payment Processors 9037

4 Overview 9039

i

5 Installing Merchant 9041
5.1 Post-installation . 9041
5.2 Configuration . 9041
5.3 Running the Test Suite . 9041

6 Credit Card 9043
6.1 Attribute Reference . 9043
6.2 Method Reference . 9043
6.3 Subclasses . 9044

7 Gateways 9047
7.1 Attribute Reference . 9047
7.2 Method Reference . 9047
7.3 Helper functions . 9049

8 On-site Processing 9051

9 Authorize.Net Gateway 9053
9.1 Usage . 9053

10 Beanstream 9055
10.1 Example: . 9055

11 Bitcoin Gateway 9057
11.1 Usage . 9057

12 Braintree Payments Server to Server 9059
12.1 Example: . 9059

13 Chargebee 9061
13.1 Example: . 9061

14 eWay Gateway 9063
14.1 Usage . 9063

15 Paylane Gateway 9065
15.1 Example: . 9065

16 PayPal Gateway 9067
16.1 Usage . 9067

17 Stripe Payments 9069
17.1 Example: . 9069

18 WePay Payments 9071
18.1 Example: . 9071

19 Off-site Processing 9073
19.1 Integration . 9073

20 PayPal Website Payments Standard 9075
20.1 Test or Live Mode . 9075
20.2 Example . 9076

21 WorldPay 9079
21.1 Example . 9079

ii

22 Amazon Flexible Payment Service 9081
22.1 Example . 9082

23 Braintree Payments Transparent Redirect 9085
23.1 Example: . 9086

24 Stripe Payment Integration 9087
24.1 Example: . 9087

25 eWAY Payment Integration 9089
25.1 Example: . 9092

26 Authorize.Net Direct Post Method 9093
26.1 Example: . 9094

27 Signals 9095

28 Writing a new gateway 9097

29 Customizing Merchant 9099

30 Contributing to Merchant 9101

31 Changes 9103
31.1 0.4 (upcoming) . 9103
31.2 0.3 . 9103
31.3 0.2 . 9103
31.4 0.1 . 9103
31.5 0.09 . 9103
31.6 0.08 . 9103
31.7 0.07 . 9104
31.8 0.06 . 9104
31.9 0.05 . 9104
31.10 0.04 . 9104
31.11 0.03 . 9104
31.12 0.02 . 9104
31.13 0.01 . 9105

32 Indices and tables 9107

iii

iv

Merchant Documentation Documentation, Release 0.09a

Contents:

Contents 1

Merchant Documentation Documentation, Release 0.09a

2 Contents

CHAPTER 1

Welcome to Merchant’s documentation!

Contents:

1.1 Welcome to Merchant’s documentation!

Contents:

1.1.1 Welcome to Merchant’s documentation!

Contents:

Welcome to Merchant’s documentation!

Contents:

Welcome to Merchant’s documentation!

Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

3

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

4 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

1.1. Welcome to Merchant’s documentation! 5

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

6 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

1.1. Welcome to Merchant’s documentation! 7

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

8 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

1.1. Welcome to Merchant’s documentation! 9

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

10 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

1.1. Welcome to Merchant’s documentation! 11

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

12 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

1.1. Welcome to Merchant’s documentation! 13

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

14 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

1.1. Welcome to Merchant’s documentation! 15

Merchant Documentation Documentation, Release 0.09a

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Welcome to Merchant’s documentation! Contents:

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

16 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

1.1. Welcome to Merchant’s documentation! 17

Merchant Documentation Documentation, Release 0.09a

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

18 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

1.1. Welcome to Merchant’s documentation! 19

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

20 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

1.1. Welcome to Merchant’s documentation! 21

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

22 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 23

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

24 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

1.1. Welcome to Merchant’s documentation! 25

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",

26 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 27

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

28 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 29

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

30 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

1.1. Welcome to Merchant’s documentation! 31

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,

32 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

'pay_pal': {
"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

1.1. Welcome to Merchant’s documentation! 33

Merchant Documentation Documentation, Release 0.09a

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",

34 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... {"obj": world_pay},

... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

1.1. Welcome to Merchant’s documentation! 35

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),

36 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 37

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

38 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

1.1. Welcome to Merchant’s documentation! 39

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

40 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 41

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

42 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 43

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

44 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 45

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

46 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 47

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

48 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 49

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

50 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 51

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

52 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 53

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

54 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 55

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

56 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 57

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

58 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 59

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

60 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 61

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

62 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 63

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

64 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 65

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

66 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 67

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

68 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 69

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

70 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 71

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

72 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 73

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

74 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 75

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

76 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 77

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

78 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 79

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

80 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 81

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

82 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 83

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

84 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 85

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

86 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 87

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

88 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 89

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

90 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 91

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

92 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 93

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

94 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 95

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

96 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 97

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

98 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 99

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

100 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 101

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

102 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 103

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

104 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 105

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

106 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 107

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

108 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 109

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

110 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 111

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

112 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 113

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

114 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 115

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

116 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 117

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

118 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 119

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

120 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 121

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

122 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 123

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

124 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 125

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

126 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 127

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

128 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 129

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

130 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 131

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

132 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 133

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

134 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 135

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

136 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 137

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

138 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 139

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

140 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 141

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

142 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 143

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

144 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 145

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

146 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 147

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

148 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 149

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

150 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 151

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

152 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 153

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

154 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 155

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

156 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 157

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

158 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 159

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

160 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 161

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

162 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 163

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

164 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 165

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

166 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 167

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

168 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 169

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

170 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 171

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

172 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 173

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

174 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 175

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

176 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 177

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

178 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 179

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

180 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 181

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

182 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 183

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

184 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 185

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

186 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 187

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

188 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 189

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

190 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 191

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

192 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 193

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

194 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 195

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

196 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 197

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

198 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 199

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

200 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 201

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

202 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 203

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

204 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 205

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

206 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 207

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

208 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 209

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

210 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 211

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

212 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 213

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

214 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 215

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

216 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 217

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

218 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 219

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

220 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 221

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

222 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 223

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

224 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 225

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

226 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 227

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

228 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 229

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

230 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 231

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

232 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 233

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

234 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 235

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

236 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 237

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

238 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 239

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

240 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 241

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

242 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 243

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

244 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 245

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

246 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 247

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

248 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 249

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

250 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 251

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

252 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 253

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

254 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 255

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

256 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 257

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

258 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 259

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

260 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 261

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

262 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 263

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

264 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 265

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

266 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 267

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

268 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 269

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

270 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 271

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

272 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 273

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

274 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 275

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

276 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 277

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

278 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 279

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

280 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 281

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

282 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 283

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

284 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 285

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

286 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 287

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

288 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 289

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

290 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 291

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

292 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 293

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

294 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 295

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

296 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 297

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

298 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 299

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

300 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 301

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

302 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 303

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

304 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 305

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

306 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 307

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

308 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 309

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

310 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 311

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

312 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 313

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

314 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 315

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

316 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 317

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

318 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 319

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

320 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 321

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

322 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 323

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

324 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 325

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

326 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 327

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

328 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 329

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

330 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 331

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

332 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 333

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

334 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 335

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

336 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 337

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

338 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 339

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

340 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 341

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

342 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 343

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

344 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 345

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

346 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 347

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

348 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 349

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

350 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 351

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

352 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 353

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

354 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 355

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

356 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 357

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

358 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 359

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

360 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 361

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

362 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 363

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

364 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 365

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

366 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 367

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

368 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 369

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

370 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 371

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

372 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 373

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

374 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 375

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

376 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 377

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

378 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 379

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

380 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 381

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

382 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 383

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

384 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 385

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

386 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 387

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

388 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 389

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

390 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 391

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

392 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 393

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

394 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 395

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

396 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 397

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

398 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 399

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

400 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 401

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

402 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 403

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

404 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 405

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

406 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 407

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

408 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 409

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

410 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 411

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

412 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 413

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

414 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 415

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

416 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 417

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

418 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 419

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

420 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 421

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

422 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 423

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

424 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 425

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

426 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 427

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

428 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 429

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

430 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 431

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

432 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 433

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

434 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 435

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

436 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 437

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

438 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 439

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

440 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 441

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

442 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 443

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

444 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 445

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

446 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 447

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

448 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 449

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

450 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 451

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

452 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 453

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

454 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 455

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

456 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 457

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

458 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 459

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

460 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 461

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

462 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 463

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

464 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 465

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

466 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 467

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

468 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 469

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

470 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 471

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

472 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 473

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

474 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 475

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

476 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 477

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

478 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 479

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

480 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 481

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

482 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 483

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

484 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 485

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

486 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 487

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

488 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 489

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

490 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 491

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

492 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 493

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

494 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 495

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

496 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 497

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

498 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 499

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

500 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 501

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

502 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 503

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

504 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 505

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

506 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 507

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

508 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 509

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

510 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 511

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

512 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 513

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

514 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 515

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

516 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 517

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

518 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 519

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

520 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 521

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

522 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 523

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

524 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 525

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

526 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 527

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

528 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 529

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

530 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 531

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

532 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 533

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

534 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 535

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

536 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 537

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

538 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 539

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

540 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 541

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

542 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 543

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

544 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 545

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

546 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 547

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

548 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 549

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

550 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 551

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

552 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 553

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

554 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 555

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

556 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 557

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

558 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 559

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

560 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 561

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

562 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 563

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

564 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 565

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

566 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 567

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

568 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 569

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

570 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 571

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

572 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 573

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

574 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 575

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

576 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 577

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

578 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 579

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

580 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 581

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

582 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 583

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

584 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 585

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

586 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 587

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

588 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 589

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

590 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 591

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

592 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 593

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

594 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 595

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

596 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 597

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

598 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 599

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

600 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 601

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

602 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 603

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

604 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 605

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

606 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 607

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

608 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 609

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

610 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 611

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

612 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 613

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

614 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 615

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

616 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 617

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

618 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 619

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

620 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 621

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

622 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 623

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

624 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 625

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

626 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 627

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

628 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 629

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

630 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 631

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

632 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 633

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

634 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 635

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

636 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 637

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

638 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 639

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

640 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 641

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

642 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 643

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

644 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 645

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

646 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 647

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

648 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 649

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

650 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 651

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

652 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 653

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

654 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 655

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

656 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 657

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

658 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 659

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

660 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 661

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

662 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 663

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

664 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 665

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

666 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 667

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

668 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 669

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

670 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 671

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

672 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 673

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

674 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 675

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

676 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 677

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

678 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 679

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

680 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 681

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

682 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 683

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

684 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 685

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

686 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 687

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

688 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 689

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

690 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 691

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

692 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 693

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

694 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 695

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

696 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 697

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

698 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 699

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

700 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 701

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

702 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 703

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

704 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 705

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

706 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 707

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

708 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 709

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

710 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 711

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

712 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 713

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

714 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 715

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

716 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 717

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

718 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 719

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

720 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 721

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

722 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 723

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

724 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 725

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

726 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 727

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

728 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 729

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

730 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 731

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

732 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 733

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

734 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 735

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

736 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 737

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

738 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 739

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

740 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 741

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

742 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 743

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

744 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 745

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

746 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 747

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

748 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 749

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

750 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 751

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

752 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 753

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

754 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 755

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

756 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 757

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

758 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 759

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

760 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 761

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

762 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 763

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

764 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 765

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

766 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 767

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

768 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 769

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

770 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 771

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

772 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 773

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

774 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 775

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

776 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 777

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

778 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 779

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

780 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 781

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

782 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 783

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

784 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 785

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

786 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 787

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

788 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 789

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

790 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 791

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

792 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 793

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

794 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 795

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

796 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 797

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

798 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 799

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

800 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 801

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

802 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 803

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

804 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 805

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

806 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 807

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

808 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 809

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

810 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 811

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

812 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 813

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

814 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 815

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

816 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 817

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

818 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 819

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

820 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 821

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

822 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 823

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

824 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 825

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

826 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 827

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

828 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 829

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

830 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 831

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

832 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 833

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

834 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 835

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

836 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 837

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

838 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 839

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

840 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 841

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

842 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 843

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

844 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 845

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

846 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 847

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

848 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 849

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

850 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 851

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

852 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 853

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

854 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 855

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

856 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 857

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

858 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 859

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

860 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 861

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

862 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 863

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

864 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 865

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

866 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 867

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

868 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 869

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

870 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 871

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

872 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 873

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

874 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 875

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

876 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 877

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

878 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 879

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

880 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 881

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

882 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 883

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

884 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 885

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

886 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 887

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

888 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 889

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

890 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 891

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

892 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 893

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

894 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 895

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

896 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 897

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

898 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 899

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

900 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 901

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

902 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 903

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

904 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 905

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

906 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 907

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

908 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 909

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

910 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 911

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

912 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 913

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

914 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 915

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

916 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 917

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

918 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 919

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

920 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 921

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

922 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 923

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

924 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 925

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

926 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 927

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

928 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 929

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

930 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 931

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

932 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 933

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

934 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 935

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

936 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 937

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

938 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 939

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

940 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 941

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

942 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 943

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

944 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 945

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

946 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 947

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

948 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 949

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

950 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 951

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

952 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 953

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

954 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 955

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

956 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 957

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

958 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 959

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

960 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 961

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

962 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 963

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

964 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 965

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

966 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 967

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

968 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 969

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

970 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 971

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

972 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 973

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

974 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 975

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

976 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 977

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

978 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 979

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

980 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 981

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

982 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 983

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

984 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 985

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

986 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 987

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

988 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 989

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

990 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 991

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

992 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 993

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

994 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 995

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

996 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 997

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

998 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 999

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1000 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 1001

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1002 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 1003

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1004 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 1005

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1006 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 1007

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1008 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 1009

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1010 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 1011

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1012 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 1013

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1014 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 1015

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1016 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 1017

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1018 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 1019

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1020 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 1021

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1022 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 1023

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1024 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 1025

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1026 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 1027

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1028 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 1029

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1030 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 1031

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1032 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 1033

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1034 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 1035

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1036 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 1037

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1038 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 1039

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1040 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 1041

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1042 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 1043

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1044 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 1045

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1046 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 1047

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1048 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 1049

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1050 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 1051

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1052 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 1053

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1054 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 1055

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1056 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 1057

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1058 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 1059

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1060 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 1061

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1062 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 1063

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1064 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 1065

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1066 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 1067

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1068 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 1069

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1070 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 1071

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1072 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 1073

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1074 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 1075

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1076 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 1077

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1078 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 1079

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1080 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 1081

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1082 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 1083

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1084 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 1085

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1086 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 1087

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1088 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 1089

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1090 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 1091

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1092 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 1093

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1094 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 1095

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1096 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 1097

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1098 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 1099

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1100 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 1101

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1102 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 1103

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1104 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 1105

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1106 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 1107

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1108 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 1109

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1110 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 1111

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1112 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 1113

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1114 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 1115

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1116 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 1117

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1118 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 1119

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1120 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 1121

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1122 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 1123

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1124 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 1125

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1126 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 1127

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1128 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 1129

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1130 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 1131

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1132 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 1133

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1134 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 1135

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1136 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 1137

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1138 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 1139

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1140 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 1141

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1142 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 1143

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1144 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 1145

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1146 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 1147

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1148 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 1149

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1150 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 1151

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1152 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 1153

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1154 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 1155

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1156 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 1157

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1158 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 1159

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1160 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 1161

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1162 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 1163

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1164 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 1165

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1166 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 1167

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1168 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 1169

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1170 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 1171

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1172 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 1173

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1174 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 1175

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1176 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 1177

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1178 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 1179

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1180 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 1181

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1182 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 1183

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1184 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 1185

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1186 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 1187

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1188 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 1189

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1190 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 1191

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1192 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 1193

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1194 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 1195

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1196 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 1197

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1198 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 1199

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1200 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 1201

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1202 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 1203

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1204 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 1205

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1206 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 1207

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1208 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 1209

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1210 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 1211

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1212 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 1213

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1214 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 1215

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1216 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 1217

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1218 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 1219

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1220 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 1221

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1222 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 1223

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1224 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 1225

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1226 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 1227

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1228 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 1229

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1230 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 1231

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1232 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 1233

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1234 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 1235

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1236 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 1237

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1238 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 1239

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1240 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 1241

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1242 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 1243

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1244 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 1245

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1246 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 1247

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1248 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 1249

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1250 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 1251

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1252 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 1253

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1254 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 1255

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1256 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 1257

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1258 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 1259

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1260 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 1261

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1262 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 1263

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1264 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 1265

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1266 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 1267

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1268 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 1269

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1270 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 1271

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1272 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 1273

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1274 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 1275

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1276 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 1277

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1278 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 1279

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1280 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 1281

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1282 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 1283

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1284 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 1285

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1286 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 1287

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1288 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 1289

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1290 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 1291

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1292 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 1293

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1294 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 1295

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1296 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 1297

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1298 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 1299

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1300 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 1301

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1302 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 1303

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1304 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 1305

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1306 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 1307

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1308 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 1309

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1310 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 1311

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1312 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 1313

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1314 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 1315

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1316 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 1317

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1318 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 1319

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1320 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 1321

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1322 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 1323

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1324 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 1325

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1326 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 1327

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1328 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 1329

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1330 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 1331

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1332 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 1333

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1334 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 1335

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1336 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 1337

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1338 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 1339

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1340 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 1341

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1342 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 1343

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1344 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 1345

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1346 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 1347

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1348 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 1349

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1350 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 1351

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1352 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 1353

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1354 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 1355

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1356 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 1357

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1358 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 1359

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1360 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 1361

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1362 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 1363

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1364 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 1365

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1366 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 1367

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1368 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 1369

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1370 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 1371

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1372 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 1373

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1374 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 1375

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1376 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 1377

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1378 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 1379

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1380 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 1381

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1382 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 1383

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1384 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 1385

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1386 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 1387

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1388 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 1389

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1390 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 1391

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1392 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 1393

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1394 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 1395

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1396 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 1397

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1398 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 1399

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1400 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 1401

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1402 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 1403

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1404 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 1405

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1406 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 1407

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1408 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 1409

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1410 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 1411

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1412 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 1413

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1414 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 1415

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1416 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 1417

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1418 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 1419

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1420 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 1421

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1422 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 1423

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1424 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 1425

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1426 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 1427

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1428 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 1429

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1430 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 1431

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1432 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 1433

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1434 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 1435

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1436 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 1437

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1438 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 1439

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1440 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 1441

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1442 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 1443

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1444 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 1445

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1446 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 1447

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1448 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 1449

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1450 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 1451

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1452 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 1453

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1454 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 1455

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1456 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 1457

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1458 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 1459

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1460 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 1461

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1462 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 1463

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1464 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 1465

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1466 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 1467

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1468 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 1469

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1470 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 1471

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1472 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 1473

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1474 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 1475

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1476 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 1477

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1478 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 1479

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1480 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 1481

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1482 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 1483

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1484 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 1485

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1486 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 1487

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1488 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 1489

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1490 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 1491

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1492 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 1493

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1494 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 1495

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1496 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 1497

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1498 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 1499

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1500 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 1501

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1502 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 1503

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1504 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 1505

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1506 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 1507

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1508 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 1509

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1510 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 1511

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1512 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 1513

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1514 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 1515

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1516 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 1517

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1518 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 1519

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1520 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 1521

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1522 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 1523

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1524 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 1525

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1526 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 1527

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1528 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 1529

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1530 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 1531

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1532 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 1533

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1534 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 1535

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1536 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 1537

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1538 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 1539

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1540 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 1541

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1542 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 1543

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1544 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 1545

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1546 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 1547

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1548 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 1549

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1550 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 1551

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1552 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 1553

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1554 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 1555

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1556 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 1557

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1558 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 1559

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1560 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 1561

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1562 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 1563

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1564 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 1565

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1566 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 1567

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1568 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 1569

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1570 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 1571

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1572 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 1573

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1574 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 1575

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1576 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 1577

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1578 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 1579

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1580 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 1581

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1582 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 1583

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1584 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 1585

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1586 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 1587

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1588 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 1589

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1590 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 1591

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1592 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 1593

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1594 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 1595

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1596 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 1597

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1598 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 1599

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1600 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 1601

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1602 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 1603

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1604 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 1605

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1606 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 1607

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1608 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 1609

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1610 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 1611

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1612 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 1613

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1614 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 1615

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1616 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 1617

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1618 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 1619

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1620 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 1621

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1622 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 1623

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1624 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 1625

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1626 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 1627

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1628 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 1629

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1630 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 1631

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1632 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 1633

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1634 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 1635

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1636 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 1637

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1638 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 1639

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1640 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 1641

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1642 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 1643

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1644 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 1645

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1646 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 1647

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1648 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 1649

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1650 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 1651

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1652 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 1653

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1654 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 1655

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1656 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 1657

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1658 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 1659

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1660 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 1661

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1662 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 1663

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1664 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 1665

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1666 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 1667

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1668 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 1669

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1670 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 1671

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1672 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 1673

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1674 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 1675

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1676 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 1677

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1678 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 1679

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1680 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 1681

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1682 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 1683

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1684 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 1685

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1686 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 1687

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1688 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 1689

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1690 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 1691

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1692 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 1693

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1694 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 1695

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1696 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 1697

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1698 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 1699

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1700 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 1701

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1702 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 1703

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1704 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 1705

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1706 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 1707

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1708 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 1709

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1710 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 1711

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1712 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 1713

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1714 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 1715

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1716 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 1717

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1718 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 1719

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1720 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 1721

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1722 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 1723

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1724 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 1725

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1726 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 1727

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1728 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 1729

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1730 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 1731

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1732 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 1733

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1734 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 1735

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1736 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 1737

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1738 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 1739

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1740 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 1741

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1742 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 1743

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1744 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 1745

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1746 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 1747

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1748 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 1749

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1750 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 1751

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1752 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 1753

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1754 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 1755

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1756 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 1757

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1758 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 1759

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1760 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 1761

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1762 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 1763

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1764 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 1765

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1766 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 1767

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1768 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 1769

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1770 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 1771

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1772 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 1773

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1774 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 1775

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1776 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 1777

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1778 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 1779

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1780 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 1781

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1782 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 1783

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1784 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 1785

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1786 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 1787

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1788 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 1789

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1790 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 1791

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1792 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 1793

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1794 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 1795

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1796 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 1797

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1798 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 1799

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1800 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 1801

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1802 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 1803

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1804 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 1805

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1806 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 1807

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1808 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 1809

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1810 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 1811

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1812 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 1813

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1814 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 1815

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1816 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 1817

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1818 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 1819

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1820 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 1821

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1822 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 1823

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1824 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 1825

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1826 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 1827

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1828 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 1829

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1830 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 1831

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1832 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 1833

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1834 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 1835

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1836 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 1837

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1838 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 1839

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1840 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 1841

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1842 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 1843

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1844 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 1845

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1846 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 1847

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1848 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 1849

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1850 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 1851

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1852 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 1853

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1854 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 1855

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1856 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 1857

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1858 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 1859

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1860 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 1861

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1862 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 1863

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1864 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 1865

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1866 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 1867

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1868 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 1869

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1870 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 1871

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1872 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 1873

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1874 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 1875

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1876 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 1877

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1878 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 1879

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1880 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 1881

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1882 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 1883

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1884 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 1885

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1886 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 1887

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1888 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 1889

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1890 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 1891

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1892 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 1893

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1894 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 1895

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1896 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 1897

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1898 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 1899

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1900 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 1901

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1902 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 1903

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1904 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 1905

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1906 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 1907

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1908 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 1909

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1910 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 1911

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1912 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 1913

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1914 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 1915

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1916 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 1917

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1918 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 1919

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1920 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 1921

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1922 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 1923

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1924 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 1925

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1926 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 1927

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1928 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 1929

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1930 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 1931

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1932 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 1933

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1934 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 1935

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1936 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 1937

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1938 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 1939

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1940 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 1941

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1942 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 1943

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1944 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 1945

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1946 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 1947

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1948 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 1949

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1950 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 1951

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1952 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 1953

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1954 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 1955

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1956 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 1957

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1958 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 1959

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1960 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 1961

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1962 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 1963

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1964 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 1965

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1966 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 1967

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1968 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 1969

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1970 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 1971

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1972 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 1973

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1974 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 1975

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1976 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 1977

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1978 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 1979

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1980 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 1981

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1982 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 1983

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1984 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 1985

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1986 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 1987

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1988 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 1989

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1990 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 1991

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1992 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 1993

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1994 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 1995

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1996 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 1997

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1998 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 1999

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

2000 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 2001

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

2002 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 2003

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

2004 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 2005

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

2006 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 2007

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

2008 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 2009

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

2010 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 2011

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

2012 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 2013

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

2014 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 2015

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

2016 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 2017

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

2018 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 2019

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

2020 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 2021

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

2022 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 2023

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

2024 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 2025

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

2026 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 2027

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

2028 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 2029

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

2030 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 2031

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

2032 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 2033

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

2034 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 2035

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

2036 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 2037

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

2038 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 2039

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

2040 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 2041

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

2042 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 2043

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

2044 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 2045

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

2046 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 2047

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

2048 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 2049

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

2050 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 2051

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

2052 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2053

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

2054 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 2055

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

2056 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 2057

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

2058 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 2059

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

2060 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 2061

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

2062 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 2063

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

2064 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 2065

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

2066 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 2067

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

2068 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 2069

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

2070 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 2071

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

2072 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 2073

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

2074 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 2075

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

2076 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 2077

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

2078 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 2079

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

2080 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 2081

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

2082 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 2083

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

2084 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 2085

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

2086 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 2087

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

2088 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 2089

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

2090 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 2091

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

2092 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 2093

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

2094 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 2095

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

2096 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 2097

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

2098 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 2099

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

2100 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 2101

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

2102 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 2103

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

2104 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 2105

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

2106 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 2107

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

2108 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 2109

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

2110 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 2111

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

2112 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 2113

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

2114 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 2115

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

2116 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 2117

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

2118 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 2119

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

2120 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 2121

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

2122 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 2123

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

2124 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 2125

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

2126 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 2127

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

2128 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 2129

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

2130 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 2131

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

2132 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 2133

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

2134 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 2135

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

2136 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 2137

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

2138 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 2139

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

2140 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 2141

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

2142 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 2143

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

2144 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 2145

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

2146 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 2147

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

2148 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 2149

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

2150 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 2151

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

2152 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 2153

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

2154 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 2155

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

2156 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 2157

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

2158 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 2159

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

2160 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2161

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

2162 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 2163

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

2164 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 2165

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

2166 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 2167

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

2168 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 2169

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

2170 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 2171

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

2172 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 2173

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

2174 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 2175

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

2176 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 2177

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

2178 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 2179

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

2180 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 2181

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

2182 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2183

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

2184 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 2185

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

2186 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 2187

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

2188 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 2189

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

2190 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 2191

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

2192 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 2193

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

2194 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 2195

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

2196 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 2197

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

2198 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 2199

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

2200 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 2201

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

2202 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 2203

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

2204 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 2205

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

2206 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 2207

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

2208 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 2209

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

2210 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 2211

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

2212 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 2213

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

2214 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 2215

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

2216 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 2217

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

2218 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 2219

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

2220 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 2221

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

2222 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 2223

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

2224 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 2225

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

2226 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 2227

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

2228 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 2229

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

2230 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 2231

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

2232 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 2233

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

2234 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 2235

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

2236 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 2237

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

2238 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 2239

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

2240 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 2241

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

2242 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 2243

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

2244 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 2245

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

2246 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 2247

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

2248 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 2249

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

2250 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 2251

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

2252 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 2253

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

2254 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 2255

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

2256 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 2257

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

2258 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 2259

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

2260 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 2261

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

2262 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 2263

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

2264 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 2265

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

2266 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 2267

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

2268 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 2269

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

2270 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 2271

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

2272 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 2273

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

2274 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 2275

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

2276 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 2277

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

2278 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 2279

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

2280 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 2281

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

2282 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 2283

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

2284 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 2285

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

2286 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 2287

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

2288 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 2289

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

2290 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 2291

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

2292 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 2293

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

2294 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 2295

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

2296 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 2297

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

2298 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 2299

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

2300 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 2301

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

2302 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 2303

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

2304 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 2305

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

2306 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 2307

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

2308 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 2309

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

2310 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 2311

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

2312 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 2313

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

2314 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 2315

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

2316 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 2317

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

2318 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 2319

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

2320 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 2321

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

2322 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2323

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

2324 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 2325

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

2326 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 2327

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

2328 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 2329

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

2330 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 2331

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

2332 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 2333

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

2334 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 2335

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

2336 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 2337

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

2338 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 2339

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

2340 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 2341

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

2342 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 2343

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

2344 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 2345

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

2346 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 2347

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

2348 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 2349

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

2350 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 2351

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

2352 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 2353

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

2354 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 2355

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

2356 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 2357

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

2358 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 2359

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

2360 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 2361

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

2362 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 2363

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

2364 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 2365

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

2366 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 2367

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

2368 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 2369

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

2370 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 2371

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

2372 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 2373

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

2374 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 2375

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

2376 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 2377

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

2378 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 2379

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

2380 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 2381

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

2382 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 2383

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

2384 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 2385

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

2386 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 2387

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

2388 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 2389

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

2390 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 2391

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

2392 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 2393

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

2394 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 2395

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

2396 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 2397

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

2398 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 2399

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

2400 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 2401

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

2402 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 2403

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

2404 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 2405

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

2406 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 2407

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

2408 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 2409

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

2410 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 2411

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

2412 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 2413

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

2414 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 2415

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

2416 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 2417

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

2418 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 2419

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

2420 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 2421

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

2422 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 2423

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

2424 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 2425

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

2426 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 2427

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

2428 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 2429

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

2430 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2431

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

2432 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 2433

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

2434 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 2435

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

2436 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 2437

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

2438 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 2439

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

2440 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 2441

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

2442 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 2443

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

2444 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 2445

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

2446 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 2447

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

2448 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 2449

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

2450 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 2451

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

2452 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2453

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

2454 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 2455

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

2456 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 2457

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

2458 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 2459

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

2460 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 2461

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

2462 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 2463

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

2464 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 2465

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

2466 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 2467

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

2468 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 2469

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

2470 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 2471

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

2472 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 2473

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

2474 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 2475

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

2476 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 2477

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

2478 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 2479

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

2480 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 2481

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

2482 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 2483

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

2484 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 2485

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

2486 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 2487

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

2488 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 2489

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

2490 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 2491

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

2492 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 2493

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

2494 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 2495

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

2496 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 2497

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

2498 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 2499

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

2500 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 2501

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

2502 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 2503

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

2504 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 2505

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

2506 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 2507

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

2508 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 2509

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

2510 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 2511

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

2512 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 2513

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

2514 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 2515

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

2516 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 2517

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

2518 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 2519

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

2520 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 2521

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

2522 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 2523

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

2524 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 2525

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

2526 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 2527

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

2528 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 2529

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

2530 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 2531

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

2532 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 2533

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

2534 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 2535

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

2536 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 2537

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

2538 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 2539

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

2540 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 2541

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

2542 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 2543

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

2544 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 2545

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

2546 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 2547

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

2548 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 2549

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

2550 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 2551

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

2552 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 2553

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

2554 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 2555

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

2556 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 2557

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

2558 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 2559

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

2560 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 2561

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

2562 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 2563

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

2564 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 2565

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

2566 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 2567

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

2568 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 2569

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

2570 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 2571

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

2572 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 2573

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

2574 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 2575

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

2576 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 2577

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

2578 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 2579

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

2580 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 2581

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

2582 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 2583

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

2584 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 2585

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

2586 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 2587

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

2588 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 2589

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

2590 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 2591

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

2592 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2593

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

2594 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 2595

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

2596 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 2597

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

2598 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 2599

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

2600 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 2601

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

2602 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 2603

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

2604 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 2605

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

2606 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 2607

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

2608 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 2609

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

2610 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 2611

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

2612 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 2613

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

2614 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 2615

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

2616 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 2617

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

2618 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 2619

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

2620 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 2621

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

2622 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 2623

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

2624 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 2625

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

2626 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 2627

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

2628 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 2629

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

2630 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 2631

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

2632 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 2633

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

2634 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 2635

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

2636 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 2637

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

2638 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 2639

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

2640 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 2641

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

2642 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 2643

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

2644 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 2645

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

2646 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 2647

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

2648 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 2649

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

2650 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 2651

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

2652 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 2653

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

2654 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 2655

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

2656 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 2657

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

2658 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 2659

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

2660 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 2661

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

2662 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 2663

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

2664 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 2665

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

2666 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 2667

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

2668 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 2669

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

2670 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 2671

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

2672 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 2673

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

2674 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 2675

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

2676 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 2677

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

2678 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 2679

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

2680 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 2681

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

2682 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 2683

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

2684 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 2685

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

2686 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 2687

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

2688 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 2689

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

2690 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 2691

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

2692 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 2693

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

2694 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 2695

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

2696 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 2697

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

2698 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 2699

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

2700 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2701

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

2702 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 2703

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

2704 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 2705

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

2706 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 2707

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

2708 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 2709

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

2710 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 2711

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

2712 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 2713

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

2714 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 2715

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

2716 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 2717

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

2718 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 2719

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

2720 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 2721

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

2722 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2723

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

2724 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 2725

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

2726 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 2727

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

2728 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 2729

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

2730 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 2731

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

2732 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 2733

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

2734 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 2735

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

2736 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 2737

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

2738 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 2739

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

2740 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 2741

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

2742 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 2743

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

2744 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 2745

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

2746 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 2747

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

2748 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 2749

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

2750 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 2751

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

2752 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 2753

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

2754 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 2755

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

2756 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 2757

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

2758 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 2759

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

2760 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 2761

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

2762 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 2763

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

2764 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 2765

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

2766 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 2767

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

2768 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 2769

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

2770 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 2771

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

2772 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 2773

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

2774 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 2775

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

2776 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 2777

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

2778 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 2779

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

2780 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 2781

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

2782 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 2783

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

2784 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 2785

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

2786 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 2787

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

2788 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 2789

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

2790 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 2791

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

2792 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 2793

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

2794 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 2795

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

2796 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 2797

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

2798 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 2799

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

2800 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 2801

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

2802 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 2803

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

2804 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 2805

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

2806 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 2807

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

2808 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 2809

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

2810 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 2811

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

2812 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 2813

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

2814 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 2815

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

2816 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 2817

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

2818 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 2819

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

2820 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 2821

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

2822 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 2823

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

2824 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 2825

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

2826 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 2827

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

2828 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 2829

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

2830 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 2831

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

2832 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 2833

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

2834 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 2835

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

2836 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 2837

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

2838 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 2839

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

2840 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 2841

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

2842 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 2843

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

2844 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 2845

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

2846 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 2847

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

2848 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 2849

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

2850 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 2851

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

2852 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 2853

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

2854 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 2855

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

2856 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 2857

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

2858 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 2859

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

2860 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 2861

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

2862 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2863

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

2864 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 2865

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

2866 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 2867

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

2868 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 2869

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

2870 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 2871

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

2872 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 2873

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

2874 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 2875

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

2876 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 2877

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

2878 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 2879

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

2880 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 2881

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

2882 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 2883

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

2884 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 2885

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

2886 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 2887

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

2888 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 2889

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

2890 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 2891

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

2892 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 2893

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

2894 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 2895

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

2896 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 2897

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

2898 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 2899

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

2900 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 2901

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

2902 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 2903

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

2904 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 2905

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

2906 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 2907

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

2908 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 2909

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

2910 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 2911

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

2912 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 2913

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

2914 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 2915

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

2916 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 2917

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

2918 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 2919

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

2920 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 2921

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

2922 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 2923

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

2924 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 2925

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

2926 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 2927

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

2928 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 2929

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

2930 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 2931

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

2932 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 2933

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

2934 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 2935

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

2936 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 2937

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

2938 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 2939

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

2940 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 2941

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

2942 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 2943

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

2944 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 2945

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

2946 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 2947

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

2948 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 2949

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

2950 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 2951

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

2952 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 2953

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

2954 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 2955

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

2956 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 2957

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

2958 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 2959

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

2960 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 2961

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

2962 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 2963

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

2964 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 2965

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

2966 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 2967

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

2968 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 2969

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

2970 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2971

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

2972 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 2973

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

2974 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 2975

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

2976 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 2977

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

2978 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 2979

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

2980 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 2981

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

2982 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 2983

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

2984 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 2985

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

2986 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 2987

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

2988 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 2989

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

2990 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 2991

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

2992 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 2993

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

2994 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 2995

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

2996 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 2997

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

2998 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 2999

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

3000 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 3001

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

3002 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 3003

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

3004 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 3005

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

3006 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 3007

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

3008 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 3009

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

3010 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 3011

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

3012 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 3013

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

3014 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 3015

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

3016 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 3017

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

3018 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 3019

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

3020 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 3021

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

3022 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 3023

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

3024 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 3025

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

3026 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3027

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

3028 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 3029

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

3030 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 3031

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

3032 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 3033

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

3034 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 3035

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

3036 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 3037

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

3038 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 3039

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

3040 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 3041

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

3042 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 3043

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

3044 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 3045

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

3046 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 3047

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

3048 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 3049

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

3050 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 3051

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

3052 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 3053

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

3054 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 3055

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

3056 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 3057

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

3058 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 3059

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

3060 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 3061

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

3062 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 3063

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

3064 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 3065

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

3066 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 3067

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

3068 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 3069

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

3070 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 3071

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

3072 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 3073

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

3074 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 3075

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

3076 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 3077

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

3078 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 3079

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

3080 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 3081

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

3082 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 3083

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

3084 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 3085

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

3086 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 3087

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

3088 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 3089

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

3090 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 3091

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

3092 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3093

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

3094 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 3095

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

3096 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 3097

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

3098 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 3099

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

3100 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 3101

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

3102 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 3103

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

3104 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 3105

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

3106 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 3107

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

3108 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 3109

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

3110 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 3111

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

3112 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 3113

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

3114 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 3115

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

3116 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 3117

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

3118 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 3119

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

3120 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 3121

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

3122 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 3123

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

3124 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 3125

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

3126 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 3127

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

3128 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 3129

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

3130 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 3131

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

3132 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 3133

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

3134 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 3135

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

3136 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 3137

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

3138 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 3139

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

3140 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 3141

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

3142 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 3143

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

3144 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 3145

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

3146 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 3147

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

3148 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 3149

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

3150 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 3151

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

3152 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 3153

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

3154 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 3155

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

3156 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 3157

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

3158 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 3159

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

3160 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 3161

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

3162 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 3163

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

3164 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 3165

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

3166 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3167

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

3168 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 3169

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

3170 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 3171

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

3172 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 3173

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

3174 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 3175

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

3176 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 3177

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

3178 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 3179

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

3180 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 3181

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

3182 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 3183

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

3184 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 3185

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

3186 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 3187

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

3188 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 3189

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

3190 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 3191

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

3192 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 3193

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

3194 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 3195

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

3196 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 3197

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

3198 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 3199

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

3200 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 3201

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

3202 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 3203

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

3204 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 3205

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

3206 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 3207

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

3208 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 3209

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

3210 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 3211

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

3212 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 3213

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

3214 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 3215

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

3216 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 3217

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

3218 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 3219

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

3220 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 3221

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

3222 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 3223

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

3224 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 3225

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

3226 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 3227

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

3228 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 3229

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

3230 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 3231

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

3232 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 3233

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

3234 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 3235

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

3236 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 3237

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

3238 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 3239

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

3240 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 3241

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

3242 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 3243

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

3244 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 3245

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

3246 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 3247

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

3248 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 3249

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

3250 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 3251

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

3252 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 3253

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

3254 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 3255

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

3256 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 3257

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

3258 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 3259

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

3260 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 3261

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

3262 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 3263

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

3264 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 3265

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

3266 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 3267

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

3268 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 3269

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

3270 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 3271

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

3272 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 3273

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

3274 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 3275

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

3276 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 3277

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

3278 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 3279

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

3280 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 3281

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

3282 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 3283

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

3284 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 3285

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

3286 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 3287

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

3288 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 3289

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

3290 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 3291

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

3292 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 3293

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

3294 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 3295

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

3296 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3297

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

3298 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 3299

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

3300 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 3301

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

3302 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 3303

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

3304 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 3305

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

3306 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 3307

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

3308 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 3309

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

3310 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 3311

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

3312 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 3313

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

3314 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 3315

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

3316 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 3317

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

3318 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 3319

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

3320 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 3321

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

3322 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 3323

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

3324 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 3325

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

3326 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 3327

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

3328 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 3329

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

3330 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 3331

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

3332 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 3333

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

3334 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 3335

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

3336 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 3337

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

3338 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 3339

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

3340 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 3341

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

3342 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 3343

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

3344 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 3345

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

3346 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 3347

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

3348 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 3349

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

3350 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 3351

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

3352 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 3353

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

3354 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 3355

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

3356 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 3357

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

3358 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 3359

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

3360 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 3361

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

3362 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3363

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

3364 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 3365

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

3366 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 3367

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

3368 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 3369

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

3370 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 3371

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

3372 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 3373

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

3374 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 3375

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

3376 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 3377

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

3378 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 3379

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

3380 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 3381

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

3382 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 3383

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

3384 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 3385

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

3386 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 3387

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

3388 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 3389

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

3390 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 3391

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

3392 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 3393

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

3394 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 3395

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

3396 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 3397

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

3398 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 3399

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

3400 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 3401

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

3402 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 3403

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

3404 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 3405

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

3406 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 3407

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

3408 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 3409

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

3410 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 3411

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

3412 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 3413

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

3414 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 3415

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

3416 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 3417

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

3418 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 3419

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

3420 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 3421

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

3422 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 3423

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

3424 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 3425

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

3426 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 3427

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

3428 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 3429

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

3430 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 3431

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

3432 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 3433

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

3434 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 3435

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

3436 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3437

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

3438 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 3439

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

3440 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 3441

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

3442 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 3443

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

3444 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 3445

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

3446 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 3447

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

3448 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 3449

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

3450 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 3451

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

3452 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 3453

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

3454 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 3455

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

3456 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 3457

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

3458 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 3459

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

3460 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 3461

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

3462 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 3463

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

3464 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 3465

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

3466 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 3467

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

3468 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 3469

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

3470 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 3471

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

3472 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 3473

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

3474 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 3475

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

3476 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 3477

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

3478 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 3479

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

3480 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 3481

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

3482 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 3483

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

3484 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 3485

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

3486 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 3487

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

3488 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 3489

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

3490 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 3491

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

3492 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 3493

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

3494 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 3495

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

3496 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 3497

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

3498 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 3499

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

3500 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 3501

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

3502 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 3503

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

3504 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 3505

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

3506 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 3507

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

3508 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 3509

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

3510 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 3511

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

3512 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 3513

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

3514 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 3515

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

3516 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 3517

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

3518 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 3519

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

3520 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 3521

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

3522 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 3523

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

3524 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 3525

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

3526 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 3527

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

3528 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 3529

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

3530 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 3531

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

3532 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 3533

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

3534 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 3535

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

3536 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 3537

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

3538 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 3539

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

3540 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 3541

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

3542 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 3543

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

3544 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 3545

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

3546 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 3547

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

3548 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 3549

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

3550 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 3551

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

3552 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 3553

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

3554 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 3555

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

3556 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 3557

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

3558 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 3559

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

3560 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 3561

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

3562 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 3563

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

3564 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 3565

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

3566 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3567

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

3568 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 3569

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

3570 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 3571

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

3572 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 3573

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

3574 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 3575

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

3576 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 3577

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

3578 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 3579

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

3580 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 3581

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

3582 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 3583

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

3584 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 3585

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

3586 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 3587

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

3588 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 3589

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

3590 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 3591

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

3592 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 3593

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

3594 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 3595

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

3596 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 3597

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

3598 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 3599

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

3600 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 3601

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

3602 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 3603

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

3604 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 3605

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

3606 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 3607

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

3608 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 3609

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

3610 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 3611

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

3612 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 3613

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

3614 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 3615

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

3616 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 3617

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

3618 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 3619

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

3620 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 3621

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

3622 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 3623

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

3624 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 3625

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

3626 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 3627

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

3628 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 3629

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

3630 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 3631

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

3632 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3633

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

3634 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 3635

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

3636 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 3637

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

3638 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 3639

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

3640 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 3641

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

3642 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 3643

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

3644 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 3645

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

3646 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 3647

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

3648 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 3649

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

3650 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 3651

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

3652 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 3653

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

3654 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 3655

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

3656 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 3657

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

3658 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 3659

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

3660 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 3661

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

3662 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 3663

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

3664 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 3665

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

3666 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 3667

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

3668 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 3669

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

3670 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 3671

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

3672 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 3673

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

3674 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 3675

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

3676 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 3677

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

3678 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 3679

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

3680 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 3681

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

3682 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 3683

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

3684 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 3685

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

3686 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 3687

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

3688 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 3689

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

3690 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 3691

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

3692 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 3693

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

3694 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 3695

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

3696 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 3697

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

3698 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 3699

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

3700 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 3701

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

3702 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 3703

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

3704 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 3705

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

3706 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3707

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

3708 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 3709

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

3710 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 3711

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

3712 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 3713

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

3714 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 3715

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

3716 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 3717

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

3718 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 3719

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

3720 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 3721

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

3722 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 3723

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

3724 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 3725

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

3726 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 3727

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

3728 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 3729

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

3730 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 3731

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

3732 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 3733

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

3734 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 3735

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

3736 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 3737

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

3738 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 3739

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

3740 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 3741

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

3742 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 3743

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

3744 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 3745

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

3746 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 3747

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

3748 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 3749

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

3750 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 3751

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

3752 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 3753

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

3754 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 3755

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

3756 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 3757

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

3758 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 3759

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

3760 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 3761

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

3762 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 3763

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

3764 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 3765

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

3766 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 3767

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

3768 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 3769

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

3770 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 3771

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

3772 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 3773

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

3774 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 3775

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

3776 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 3777

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

3778 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 3779

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

3780 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 3781

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

3782 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 3783

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

3784 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 3785

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

3786 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 3787

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

3788 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 3789

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

3790 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 3791

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

3792 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 3793

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

3794 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 3795

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

3796 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 3797

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

3798 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 3799

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

3800 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 3801

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

3802 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 3803

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

3804 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 3805

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

3806 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 3807

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

3808 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 3809

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

3810 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 3811

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

3812 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 3813

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

3814 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 3815

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

3816 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 3817

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

3818 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 3819

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

3820 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 3821

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

3822 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 3823

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

3824 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 3825

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

3826 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 3827

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

3828 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 3829

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

3830 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 3831

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

3832 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 3833

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

3834 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 3835

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

3836 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3837

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

3838 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 3839

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

3840 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 3841

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

3842 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 3843

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

3844 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 3845

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

3846 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 3847

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

3848 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 3849

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

3850 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 3851

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

3852 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 3853

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

3854 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 3855

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

3856 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 3857

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

3858 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 3859

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

3860 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 3861

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

3862 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 3863

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

3864 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 3865

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

3866 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 3867

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

3868 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 3869

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

3870 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 3871

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

3872 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 3873

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

3874 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 3875

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

3876 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 3877

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

3878 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 3879

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

3880 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 3881

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

3882 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 3883

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

3884 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 3885

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

3886 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 3887

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

3888 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 3889

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

3890 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 3891

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

3892 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 3893

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

3894 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 3895

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

3896 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 3897

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

3898 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 3899

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

3900 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 3901

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

3902 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3903

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

3904 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 3905

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

3906 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 3907

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

3908 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 3909

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

3910 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 3911

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

3912 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 3913

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

3914 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 3915

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

3916 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 3917

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

3918 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 3919

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

3920 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 3921

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

3922 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 3923

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

3924 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 3925

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

3926 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 3927

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

3928 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 3929

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

3930 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 3931

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

3932 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 3933

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

3934 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 3935

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

3936 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 3937

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

3938 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 3939

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

3940 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 3941

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

3942 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 3943

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

3944 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 3945

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

3946 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 3947

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

3948 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 3949

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

3950 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 3951

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

3952 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 3953

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

3954 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 3955

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

3956 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 3957

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

3958 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 3959

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

3960 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 3961

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

3962 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 3963

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

3964 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 3965

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

3966 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 3967

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

3968 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 3969

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

3970 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 3971

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

3972 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 3973

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

3974 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 3975

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

3976 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3977

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

3978 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 3979

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

3980 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 3981

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

3982 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 3983

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

3984 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 3985

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

3986 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 3987

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

3988 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 3989

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

3990 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 3991

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

3992 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 3993

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

3994 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 3995

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

3996 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 3997

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

3998 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 3999

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

4000 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 4001

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

4002 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 4003

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

4004 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 4005

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

4006 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 4007

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

4008 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 4009

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

4010 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 4011

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

4012 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 4013

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

4014 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 4015

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

4016 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 4017

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

4018 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 4019

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

4020 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 4021

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

4022 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 4023

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

4024 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 4025

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

4026 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 4027

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

4028 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 4029

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

4030 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 4031

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

4032 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 4033

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

4034 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 4035

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

4036 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 4037

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

4038 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 4039

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

4040 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 4041

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

4042 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 4043

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

4044 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 4045

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

4046 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 4047

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

4048 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 4049

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

4050 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4051

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

4052 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 4053

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

4054 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 4055

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

4056 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 4057

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

4058 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 4059

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

4060 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 4061

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

4062 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 4063

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

4064 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 4065

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

4066 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 4067

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

4068 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 4069

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

4070 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 4071

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

4072 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4073

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

4074 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 4075

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

4076 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 4077

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

4078 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 4079

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

4080 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 4081

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

4082 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 4083

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

4084 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 4085

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

4086 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 4087

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

4088 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 4089

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

4090 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 4091

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

4092 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 4093

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

4094 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 4095

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

4096 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 4097

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

4098 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 4099

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

4100 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 4101

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

4102 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 4103

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

4104 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 4105

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

4106 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 4107

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

4108 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 4109

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

4110 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 4111

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

4112 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 4113

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

4114 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 4115

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

4116 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 4117

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

4118 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 4119

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

4120 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 4121

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

4122 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 4123

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

4124 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 4125

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

4126 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 4127

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

4128 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 4129

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

4130 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 4131

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

4132 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 4133

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

4134 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 4135

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

4136 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 4137

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

4138 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 4139

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

4140 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 4141

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

4142 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 4143

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

4144 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 4145

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

4146 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 4147

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

4148 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 4149

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

4150 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 4151

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

4152 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 4153

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

4154 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 4155

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

4156 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 4157

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

4158 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 4159

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

4160 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 4161

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

4162 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 4163

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

4164 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 4165

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

4166 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 4167

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

4168 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 4169

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

4170 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 4171

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

4172 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 4173

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

4174 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 4175

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

4176 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 4177

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

4178 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 4179

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

4180 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 4181

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

4182 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 4183

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

4184 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 4185

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

4186 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 4187

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

4188 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 4189

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

4190 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 4191

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

4192 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 4193

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

4194 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 4195

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

4196 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 4197

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

4198 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 4199

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

4200 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 4201

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

4202 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 4203

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

4204 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 4205

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

4206 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 4207

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

4208 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 4209

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

4210 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 4211

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

4212 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4213

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

4214 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 4215

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

4216 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 4217

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

4218 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 4219

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

4220 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 4221

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

4222 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 4223

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

4224 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 4225

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

4226 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 4227

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

4228 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 4229

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

4230 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 4231

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

4232 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 4233

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

4234 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 4235

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

4236 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 4237

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

4238 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 4239

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

4240 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 4241

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

4242 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 4243

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

4244 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 4245

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

4246 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 4247

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

4248 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 4249

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

4250 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 4251

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

4252 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 4253

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

4254 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 4255

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

4256 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 4257

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4258 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 4259

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

4260 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 4261

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

4262 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 4263

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

4264 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 4265

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

4266 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 4267

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

4268 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 4269

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

4270 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 4271

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

4272 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 4273

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

4274 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 4275

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

4276 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 4277

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

4278 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 4279

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

4280 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 4281

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

4282 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 4283

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

4284 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 4285

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

4286 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 4287

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

4288 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 4289

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

4290 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 4291

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

4292 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 4293

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

4294 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 4295

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

4296 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 4297

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

4298 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 4299

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

4300 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 4301

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

4302 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 4303

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

4304 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 4305

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

4306 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 4307

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

4308 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 4309

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

4310 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 4311

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

4312 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 4313

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

4314 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 4315

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

4316 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 4317

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

4318 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 4319

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

4320 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4321

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

4322 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 4323

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

4324 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 4325

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

4326 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 4327

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

4328 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 4329

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

4330 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 4331

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

4332 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 4333

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

4334 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 4335

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

4336 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 4337

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

4338 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 4339

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

4340 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 4341

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

4342 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4343

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

4344 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 4345

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

4346 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 4347

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

4348 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 4349

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

4350 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 4351

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

4352 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 4353

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

4354 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 4355

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

4356 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 4357

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

4358 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 4359

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

4360 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 4361

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

4362 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 4363

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

4364 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 4365

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

4366 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 4367

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

4368 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 4369

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

4370 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 4371

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

4372 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 4373

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

4374 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 4375

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

4376 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 4377

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

4378 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 4379

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

4380 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 4381

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

4382 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 4383

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

4384 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 4385

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

4386 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 4387

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

4388 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 4389

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

4390 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 4391

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

4392 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 4393

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

4394 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 4395

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

4396 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 4397

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

4398 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 4399

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

4400 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 4401

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

4402 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 4403

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

4404 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 4405

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

4406 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 4407

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

4408 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 4409

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

4410 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 4411

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

4412 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 4413

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

4414 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 4415

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

4416 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 4417

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

4418 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 4419

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

4420 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 4421

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

4422 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 4423

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

4424 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 4425

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

4426 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 4427

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

4428 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 4429

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

4430 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 4431

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

4432 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 4433

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

4434 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 4435

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

4436 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 4437

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

4438 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 4439

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

4440 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 4441

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

4442 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 4443

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

4444 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 4445

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

4446 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 4447

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

4448 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 4449

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

4450 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 4451

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

4452 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 4453

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

4454 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 4455

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

4456 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 4457

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

4458 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 4459

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

4460 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 4461

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

4462 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 4463

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

4464 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 4465

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

4466 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 4467

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

4468 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 4469

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

4470 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 4471

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

4472 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 4473

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

4474 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 4475

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

4476 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 4477

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

4478 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 4479

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

4480 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 4481

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

4482 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4483

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

4484 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 4485

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

4486 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 4487

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

4488 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 4489

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

4490 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 4491

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

4492 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 4493

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

4494 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 4495

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

4496 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 4497

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

4498 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 4499

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

4500 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 4501

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

4502 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 4503

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

4504 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 4505

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

4506 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 4507

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

4508 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 4509

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

4510 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 4511

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

4512 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 4513

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

4514 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 4515

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

4516 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 4517

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

4518 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 4519

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

4520 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 4521

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

4522 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 4523

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

4524 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 4525

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

4526 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 4527

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4528 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 4529

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

4530 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 4531

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

4532 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 4533

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

4534 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 4535

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

4536 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 4537

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

4538 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 4539

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

4540 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 4541

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

4542 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 4543

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

4544 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 4545

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

4546 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 4547

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

4548 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 4549

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

4550 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 4551

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

4552 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 4553

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

4554 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 4555

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

4556 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 4557

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

4558 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 4559

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

4560 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 4561

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

4562 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 4563

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

4564 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 4565

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

4566 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 4567

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

4568 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 4569

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

4570 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 4571

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

4572 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 4573

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

4574 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 4575

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

4576 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 4577

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

4578 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 4579

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

4580 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 4581

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

4582 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 4583

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

4584 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 4585

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

4586 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 4587

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

4588 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 4589

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

4590 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4591

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

4592 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 4593

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

4594 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 4595

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

4596 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 4597

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

4598 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 4599

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

4600 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 4601

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

4602 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 4603

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

4604 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 4605

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

4606 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 4607

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

4608 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 4609

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

4610 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 4611

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

4612 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4613

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

4614 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 4615

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

4616 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 4617

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

4618 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 4619

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

4620 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 4621

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

4622 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 4623

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

4624 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 4625

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

4626 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 4627

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

4628 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 4629

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

4630 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 4631

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

4632 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 4633

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

4634 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 4635

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

4636 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 4637

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

4638 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 4639

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

4640 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 4641

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

4642 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 4643

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

4644 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 4645

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

4646 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 4647

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

4648 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 4649

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

4650 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 4651

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

4652 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 4653

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

4654 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 4655

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

4656 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 4657

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

4658 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 4659

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

4660 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 4661

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

4662 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 4663

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

4664 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 4665

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

4666 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 4667

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

4668 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 4669

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

4670 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 4671

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

4672 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 4673

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

4674 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 4675

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

4676 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 4677

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

4678 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 4679

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

4680 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 4681

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

4682 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 4683

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

4684 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 4685

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

4686 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 4687

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

4688 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 4689

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

4690 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 4691

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

4692 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 4693

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

4694 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 4695

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

4696 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 4697

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

4698 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 4699

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

4700 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 4701

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

4702 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 4703

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

4704 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 4705

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

4706 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 4707

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

4708 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 4709

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

4710 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 4711

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

4712 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 4713

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

4714 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 4715

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

4716 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 4717

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

4718 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 4719

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

4720 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 4721

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

4722 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 4723

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

4724 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 4725

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

4726 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 4727

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

4728 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 4729

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

4730 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 4731

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

4732 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 4733

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

4734 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 4735

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

4736 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 4737

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

4738 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 4739

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

4740 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 4741

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

4742 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 4743

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

4744 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 4745

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

4746 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 4747

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

4748 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 4749

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

4750 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 4751

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

4752 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4753

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

4754 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 4755

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

4756 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 4757

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

4758 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 4759

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

4760 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 4761

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

4762 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 4763

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

4764 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 4765

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

4766 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 4767

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

4768 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 4769

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

4770 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 4771

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

4772 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 4773

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

4774 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 4775

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

4776 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 4777

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

4778 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 4779

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

4780 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 4781

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

4782 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 4783

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

4784 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 4785

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

4786 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 4787

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

4788 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 4789

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

4790 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 4791

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

4792 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 4793

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

4794 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 4795

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

4796 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 4797

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4798 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 4799

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

4800 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 4801

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

4802 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 4803

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

4804 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 4805

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

4806 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 4807

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

4808 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 4809

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

4810 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 4811

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

4812 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 4813

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

4814 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 4815

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

4816 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 4817

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

4818 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 4819

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

4820 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 4821

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

4822 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 4823

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

4824 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 4825

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

4826 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 4827

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

4828 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 4829

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

4830 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 4831

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

4832 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 4833

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

4834 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 4835

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

4836 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 4837

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

4838 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 4839

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

4840 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 4841

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

4842 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 4843

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

4844 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 4845

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

4846 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 4847

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

4848 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 4849

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

4850 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 4851

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

4852 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 4853

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

4854 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 4855

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

4856 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 4857

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

4858 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 4859

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

4860 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4861

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

4862 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 4863

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

4864 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 4865

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

4866 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 4867

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

4868 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 4869

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

4870 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 4871

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

4872 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 4873

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

4874 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 4875

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

4876 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 4877

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

4878 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 4879

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

4880 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 4881

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

4882 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4883

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

4884 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 4885

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

4886 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 4887

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

4888 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 4889

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

4890 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 4891

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

4892 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 4893

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

4894 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 4895

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

4896 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 4897

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

4898 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 4899

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

4900 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 4901

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

4902 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 4903

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

4904 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 4905

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

4906 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 4907

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

4908 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 4909

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

4910 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 4911

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

4912 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 4913

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

4914 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 4915

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

4916 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 4917

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

4918 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 4919

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

4920 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 4921

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

4922 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 4923

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

4924 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 4925

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

4926 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 4927

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

4928 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 4929

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

4930 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 4931

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

4932 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 4933

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

4934 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 4935

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

4936 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 4937

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

4938 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 4939

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

4940 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 4941

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

4942 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 4943

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

4944 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 4945

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

4946 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 4947

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

4948 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 4949

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

4950 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 4951

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

4952 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 4953

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

4954 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 4955

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

4956 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 4957

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

4958 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 4959

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

4960 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 4961

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

4962 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 4963

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

4964 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 4965

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

4966 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 4967

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

4968 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 4969

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

4970 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 4971

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

4972 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 4973

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

4974 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 4975

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

4976 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 4977

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

4978 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 4979

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

4980 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 4981

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

4982 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 4983

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

4984 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 4985

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

4986 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 4987

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

4988 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 4989

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

4990 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 4991

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

4992 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 4993

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

4994 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 4995

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

4996 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 4997

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

4998 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 4999

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

5000 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 5001

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

5002 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 5003

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

5004 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 5005

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

5006 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 5007

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

5008 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 5009

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

5010 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 5011

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

5012 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 5013

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

5014 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 5015

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

5016 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 5017

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

5018 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 5019

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

5020 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 5021

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

5022 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5023

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

5024 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 5025

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

5026 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 5027

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

5028 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 5029

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

5030 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 5031

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

5032 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 5033

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

5034 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 5035

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

5036 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 5037

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

5038 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 5039

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

5040 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 5041

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

5042 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 5043

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

5044 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 5045

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

5046 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 5047

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

5048 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 5049

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

5050 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 5051

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

5052 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 5053

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

5054 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 5055

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

5056 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5057

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

5058 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 5059

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

5060 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 5061

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

5062 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 5063

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

5064 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 5065

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

5066 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 5067

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

5068 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 5069

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

5070 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 5071

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

5072 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 5073

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

5074 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 5075

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

5076 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 5077

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

5078 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 5079

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

5080 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 5081

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

5082 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 5083

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

5084 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 5085

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

5086 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 5087

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

5088 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 5089

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

5090 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 5091

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

5092 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 5093

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

5094 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 5095

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

5096 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 5097

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

5098 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 5099

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

5100 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 5101

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

5102 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 5103

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

5104 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 5105

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

5106 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 5107

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

5108 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 5109

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

5110 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 5111

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

5112 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 5113

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

5114 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 5115

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

5116 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 5117

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

5118 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 5119

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

5120 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 5121

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

5122 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 5123

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

5124 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 5125

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

5126 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 5127

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

5128 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 5129

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

5130 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5131

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

5132 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 5133

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

5134 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 5135

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

5136 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 5137

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

5138 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 5139

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

5140 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 5141

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

5142 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 5143

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

5144 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 5145

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

5146 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 5147

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

5148 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 5149

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

5150 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 5151

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

5152 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5153

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

5154 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 5155

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

5156 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 5157

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

5158 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 5159

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

5160 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 5161

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

5162 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 5163

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

5164 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 5165

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

5166 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 5167

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

5168 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 5169

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

5170 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 5171

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

5172 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 5173

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

5174 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 5175

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

5176 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 5177

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

5178 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 5179

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

5180 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 5181

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

5182 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 5183

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

5184 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 5185

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

5186 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5187

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

5188 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 5189

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

5190 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 5191

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

5192 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 5193

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

5194 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 5195

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

5196 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 5197

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

5198 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 5199

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

5200 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 5201

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

5202 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 5203

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

5204 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 5205

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

5206 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 5207

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

5208 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 5209

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

5210 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 5211

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

5212 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 5213

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

5214 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 5215

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

5216 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 5217

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

5218 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 5219

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

5220 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 5221

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

5222 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 5223

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

5224 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 5225

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

5226 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 5227

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

5228 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 5229

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

5230 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 5231

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

5232 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 5233

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

5234 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 5235

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

5236 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 5237

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

5238 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 5239

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

5240 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 5241

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

5242 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 5243

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

5244 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 5245

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

5246 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 5247

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

5248 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 5249

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

5250 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 5251

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

5252 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5253

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

5254 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 5255

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

5256 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 5257

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

5258 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 5259

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

5260 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 5261

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

5262 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 5263

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

5264 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 5265

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

5266 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 5267

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

5268 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 5269

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

5270 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 5271

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

5272 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 5273

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

5274 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 5275

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

5276 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 5277

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

5278 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 5279

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

5280 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 5281

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

5282 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 5283

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

5284 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 5285

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

5286 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 5287

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

5288 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 5289

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

5290 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 5291

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

5292 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5293

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

5294 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 5295

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

5296 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 5297

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

5298 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 5299

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

5300 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 5301

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

5302 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 5303

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

5304 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 5305

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

5306 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 5307

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

5308 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 5309

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

5310 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 5311

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

5312 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 5313

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

5314 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 5315

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

5316 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 5317

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

5318 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 5319

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

5320 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 5321

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

5322 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 5323

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

5324 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 5325

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

5326 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5327

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

5328 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 5329

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

5330 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 5331

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

5332 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 5333

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

5334 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 5335

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

5336 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 5337

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

5338 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 5339

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

5340 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 5341

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

5342 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 5343

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

5344 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 5345

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

5346 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 5347

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

5348 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 5349

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

5350 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 5351

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

5352 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 5353

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

5354 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 5355

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

5356 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 5357

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

5358 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 5359

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

5360 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 5361

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

5362 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 5363

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

5364 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 5365

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

5366 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 5367

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

5368 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 5369

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

5370 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 5371

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

5372 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 5373

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

5374 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 5375

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

5376 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 5377

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

5378 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 5379

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

5380 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 5381

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

5382 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 5383

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

5384 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 5385

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

5386 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 5387

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

5388 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 5389

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

5390 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 5391

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

5392 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 5393

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

5394 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 5395

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

5396 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 5397

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

5398 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 5399

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

5400 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5401

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

5402 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 5403

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

5404 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 5405

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

5406 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 5407

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

5408 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 5409

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

5410 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 5411

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

5412 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 5413

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

5414 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 5415

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

5416 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 5417

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

5418 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 5419

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

5420 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 5421

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

5422 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5423

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

5424 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 5425

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

5426 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 5427

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

5428 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 5429

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

5430 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 5431

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

5432 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 5433

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

5434 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 5435

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

5436 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 5437

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

5438 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 5439

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

5440 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 5441

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

5442 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 5443

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

5444 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 5445

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

5446 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 5447

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

5448 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 5449

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

5450 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 5451

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

5452 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 5453

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

5454 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 5455

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

5456 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5457

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

5458 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 5459

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

5460 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 5461

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

5462 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 5463

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

5464 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 5465

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

5466 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 5467

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

5468 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 5469

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

5470 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 5471

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

5472 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 5473

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

5474 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 5475

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

5476 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 5477

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

5478 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 5479

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

5480 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 5481

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

5482 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 5483

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

5484 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 5485

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

5486 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 5487

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

5488 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 5489

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

5490 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 5491

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

5492 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 5493

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

5494 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 5495

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

5496 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 5497

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

5498 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 5499

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

5500 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 5501

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

5502 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 5503

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

5504 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 5505

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

5506 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 5507

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

5508 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 5509

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

5510 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 5511

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

5512 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 5513

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

5514 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 5515

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

5516 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 5517

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

5518 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 5519

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

5520 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 5521

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

5522 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5523

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

5524 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 5525

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

5526 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 5527

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

5528 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 5529

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

5530 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 5531

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

5532 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 5533

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

5534 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 5535

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

5536 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 5537

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

5538 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 5539

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

5540 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 5541

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

5542 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 5543

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

5544 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 5545

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

5546 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 5547

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

5548 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 5549

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

5550 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 5551

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

5552 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 5553

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

5554 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 5555

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

5556 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 5557

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

5558 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 5559

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

5560 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 5561

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

5562 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5563

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

5564 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 5565

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

5566 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 5567

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

5568 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 5569

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

5570 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 5571

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

5572 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 5573

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

5574 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 5575

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

5576 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 5577

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

5578 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 5579

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

5580 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 5581

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

5582 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 5583

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

5584 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 5585

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

5586 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 5587

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

5588 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 5589

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

5590 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 5591

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

5592 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 5593

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

5594 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 5595

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

5596 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5597

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

5598 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 5599

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

5600 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 5601

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

5602 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 5603

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

5604 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 5605

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

5606 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 5607

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

5608 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 5609

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

5610 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 5611

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

5612 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 5613

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

5614 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 5615

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

5616 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 5617

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

5618 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 5619

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

5620 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 5621

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

5622 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 5623

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

5624 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 5625

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

5626 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 5627

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

5628 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 5629

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

5630 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 5631

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

5632 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 5633

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

5634 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 5635

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

5636 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 5637

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

5638 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 5639

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

5640 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 5641

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

5642 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 5643

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

5644 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 5645

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

5646 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 5647

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

5648 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 5649

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

5650 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 5651

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

5652 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 5653

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

5654 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 5655

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

5656 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 5657

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

5658 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 5659

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

5660 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 5661

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

5662 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 5663

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

5664 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 5665

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

5666 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 5667

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

5668 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 5669

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

5670 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5671

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

5672 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 5673

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

5674 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 5675

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

5676 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 5677

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

5678 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 5679

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

5680 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 5681

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

5682 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 5683

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

5684 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 5685

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

5686 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 5687

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

5688 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 5689

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

5690 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 5691

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

5692 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5693

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

5694 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 5695

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

5696 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 5697

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

5698 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 5699

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

5700 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 5701

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

5702 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 5703

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

5704 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 5705

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

5706 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 5707

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

5708 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 5709

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

5710 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 5711

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

5712 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 5713

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

5714 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 5715

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

5716 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 5717

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

5718 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 5719

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

5720 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 5721

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

5722 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 5723

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

5724 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 5725

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

5726 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5727

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

5728 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 5729

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

5730 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 5731

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

5732 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 5733

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

5734 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 5735

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

5736 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 5737

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

5738 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 5739

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

5740 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 5741

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

5742 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 5743

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

5744 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 5745

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

5746 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 5747

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

5748 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 5749

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

5750 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 5751

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

5752 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 5753

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

5754 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 5755

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

5756 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 5757

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

5758 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 5759

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

5760 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 5761

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

5762 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 5763

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

5764 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 5765

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

5766 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 5767

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

5768 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 5769

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

5770 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 5771

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

5772 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 5773

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

5774 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 5775

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

5776 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 5777

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

5778 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 5779

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

5780 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 5781

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

5782 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 5783

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

5784 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 5785

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

5786 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 5787

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

5788 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 5789

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

5790 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 5791

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

5792 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5793

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

5794 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 5795

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

5796 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 5797

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

5798 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 5799

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

5800 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 5801

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

5802 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 5803

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

5804 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 5805

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

5806 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 5807

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

5808 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 5809

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

5810 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 5811

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

5812 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 5813

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

5814 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 5815

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

5816 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 5817

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

5818 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 5819

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

5820 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 5821

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

5822 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 5823

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

5824 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 5825

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

5826 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 5827

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

5828 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 5829

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

5830 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 5831

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

5832 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5833

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

5834 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 5835

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

5836 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 5837

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

5838 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 5839

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

5840 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 5841

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

5842 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 5843

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

5844 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 5845

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

5846 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 5847

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

5848 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 5849

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

5850 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 5851

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

5852 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 5853

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

5854 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 5855

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

5856 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 5857

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

5858 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 5859

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

5860 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 5861

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

5862 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 5863

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

5864 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 5865

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

5866 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5867

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

5868 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 5869

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

5870 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 5871

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

5872 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 5873

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

5874 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 5875

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

5876 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 5877

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

5878 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 5879

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

5880 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 5881

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

5882 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 5883

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

5884 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 5885

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

5886 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 5887

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

5888 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 5889

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

5890 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 5891

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

5892 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 5893

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

5894 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 5895

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

5896 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 5897

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

5898 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 5899

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

5900 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 5901

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

5902 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 5903

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

5904 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 5905

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

5906 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 5907

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

5908 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 5909

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

5910 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 5911

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

5912 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 5913

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

5914 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 5915

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

5916 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 5917

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

5918 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 5919

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

5920 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 5921

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

5922 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 5923

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

5924 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 5925

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

5926 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 5927

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

5928 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 5929

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

5930 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 5931

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

5932 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 5933

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

5934 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 5935

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

5936 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 5937

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

5938 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 5939

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

5940 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5941

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

5942 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 5943

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

5944 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 5945

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

5946 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 5947

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

5948 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 5949

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

5950 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 5951

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

5952 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 5953

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

5954 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 5955

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

5956 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 5957

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

5958 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 5959

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

5960 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 5961

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

5962 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 5963

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

5964 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 5965

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

5966 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 5967

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

5968 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 5969

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

5970 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 5971

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

5972 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 5973

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

5974 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 5975

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

5976 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 5977

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

5978 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 5979

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

5980 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 5981

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

5982 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 5983

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

5984 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 5985

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

5986 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 5987

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

5988 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 5989

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

5990 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 5991

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

5992 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 5993

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

5994 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 5995

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

5996 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5997

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

5998 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 5999

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

6000 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 6001

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

6002 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 6003

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

6004 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 6005

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

6006 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 6007

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

6008 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 6009

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

6010 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 6011

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

6012 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 6013

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

6014 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 6015

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

6016 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 6017

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

6018 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 6019

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

6020 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 6021

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

6022 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 6023

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

6024 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 6025

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

6026 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 6027

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

6028 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 6029

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

6030 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 6031

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

6032 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 6033

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

6034 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 6035

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

6036 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 6037

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

6038 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 6039

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

6040 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 6041

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

6042 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 6043

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

6044 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 6045

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

6046 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 6047

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

6048 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 6049

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

6050 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 6051

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

6052 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 6053

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

6054 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 6055

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

6056 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 6057

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

6058 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 6059

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

6060 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 6061

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

6062 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6063

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

6064 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 6065

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

6066 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 6067

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

6068 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 6069

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

6070 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 6071

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

6072 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 6073

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

6074 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 6075

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

6076 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 6077

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

6078 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 6079

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

6080 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 6081

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

6082 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 6083

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

6084 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 6085

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

6086 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 6087

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

6088 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 6089

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

6090 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 6091

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

6092 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 6093

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

6094 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 6095

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

6096 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 6097

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

6098 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 6099

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

6100 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 6101

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

6102 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 6103

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

6104 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 6105

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

6106 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 6107

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

6108 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 6109

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

6110 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 6111

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

6112 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 6113

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

6114 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 6115

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

6116 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 6117

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

6118 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 6119

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

6120 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 6121

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

6122 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 6123

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

6124 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 6125

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

6126 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 6127

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

6128 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 6129

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

6130 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 6131

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

6132 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 6133

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

6134 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 6135

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

6136 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6137

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

6138 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 6139

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

6140 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 6141

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

6142 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 6143

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

6144 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 6145

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

6146 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 6147

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

6148 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 6149

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

6150 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 6151

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

6152 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 6153

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

6154 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 6155

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

6156 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 6157

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

6158 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 6159

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

6160 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 6161

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

6162 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 6163

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

6164 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 6165

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

6166 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 6167

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

6168 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 6169

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

6170 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 6171

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

6172 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 6173

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

6174 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 6175

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

6176 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 6177

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

6178 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 6179

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

6180 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 6181

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

6182 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 6183

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

6184 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 6185

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

6186 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 6187

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

6188 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 6189

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

6190 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 6191

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

6192 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 6193

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

6194 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 6195

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

6196 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 6197

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

6198 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 6199

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

6200 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 6201

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

6202 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 6203

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

6204 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 6205

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

6206 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 6207

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

6208 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 6209

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

6210 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 6211

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

6212 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 6213

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

6214 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 6215

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

6216 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 6217

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

6218 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 6219

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

6220 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 6221

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

6222 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 6223

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

6224 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 6225

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

6226 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 6227

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

6228 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 6229

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

6230 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 6231

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

6232 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 6233

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

6234 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 6235

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

6236 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 6237

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

6238 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 6239

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

6240 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 6241

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

6242 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 6243

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

6244 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 6245

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

6246 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 6247

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

6248 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 6249

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

6250 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 6251

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

6252 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 6253

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

6254 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 6255

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

6256 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 6257

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

6258 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 6259

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

6260 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 6261

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

6262 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 6263

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

6264 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 6265

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

6266 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6267

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

6268 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 6269

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

6270 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 6271

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

6272 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 6273

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

6274 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 6275

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

6276 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 6277

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

6278 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 6279

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

6280 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 6281

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

6282 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 6283

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

6284 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 6285

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

6286 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 6287

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

6288 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 6289

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

6290 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 6291

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

6292 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 6293

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

6294 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 6295

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

6296 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 6297

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

6298 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 6299

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

6300 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 6301

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

6302 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 6303

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

6304 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 6305

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

6306 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 6307

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

6308 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 6309

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

6310 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 6311

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

6312 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 6313

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

6314 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 6315

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

6316 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 6317

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

6318 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 6319

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

6320 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 6321

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

6322 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 6323

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

6324 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 6325

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

6326 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 6327

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

6328 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 6329

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

6330 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 6331

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

6332 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6333

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

6334 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 6335

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

6336 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 6337

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

6338 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 6339

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

6340 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 6341

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

6342 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 6343

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

6344 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 6345

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

6346 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 6347

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

6348 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 6349

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

6350 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 6351

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

6352 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 6353

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

6354 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 6355

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

6356 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 6357

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

6358 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 6359

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

6360 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 6361

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

6362 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 6363

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

6364 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 6365

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

6366 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 6367

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

6368 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 6369

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

6370 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 6371

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

6372 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 6373

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

6374 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 6375

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

6376 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 6377

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

6378 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 6379

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

6380 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 6381

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

6382 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 6383

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

6384 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 6385

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

6386 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 6387

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

6388 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 6389

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

6390 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 6391

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

6392 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 6393

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

6394 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 6395

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

6396 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 6397

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

6398 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 6399

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

6400 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 6401

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

6402 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 6403

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

6404 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 6405

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

6406 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6407

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

6408 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 6409

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

6410 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 6411

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

6412 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 6413

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

6414 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 6415

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

6416 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 6417

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

6418 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 6419

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

6420 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 6421

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

6422 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 6423

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

6424 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 6425

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

6426 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 6427

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

6428 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 6429

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

6430 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 6431

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

6432 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 6433

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

6434 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 6435

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

6436 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 6437

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

6438 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 6439

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

6440 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 6441

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

6442 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 6443

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

6444 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 6445

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

6446 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 6447

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

6448 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 6449

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

6450 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 6451

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

6452 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 6453

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

6454 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 6455

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

6456 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 6457

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

6458 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 6459

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

6460 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 6461

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

6462 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 6463

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

6464 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 6465

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

6466 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 6467

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

6468 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 6469

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

6470 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 6471

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

6472 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 6473

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

6474 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 6475

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

6476 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 6477

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

6478 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 6479

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

6480 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 6481

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

6482 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 6483

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

6484 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 6485

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

6486 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 6487

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

6488 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 6489

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

6490 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 6491

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

6492 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 6493

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

6494 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 6495

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

6496 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 6497

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

6498 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 6499

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

6500 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 6501

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

6502 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 6503

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

6504 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 6505

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

6506 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 6507

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

6508 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 6509

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

6510 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 6511

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

6512 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 6513

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

6514 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 6515

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

6516 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 6517

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

6518 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 6519

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

6520 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 6521

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

6522 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 6523

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

6524 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 6525

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

6526 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 6527

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

6528 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 6529

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

6530 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 6531

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

6532 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 6533

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

6534 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 6535

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

6536 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6537

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

6538 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 6539

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

6540 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 6541

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

6542 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 6543

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

6544 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 6545

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

6546 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 6547

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

6548 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 6549

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

6550 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 6551

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

6552 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 6553

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

6554 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 6555

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

6556 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 6557

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

6558 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 6559

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

6560 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 6561

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

6562 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 6563

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

6564 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 6565

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

6566 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 6567

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

6568 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 6569

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

6570 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 6571

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

6572 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 6573

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

6574 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 6575

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

6576 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 6577

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

6578 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 6579

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

6580 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 6581

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

6582 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 6583

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

6584 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 6585

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

6586 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 6587

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

6588 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 6589

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

6590 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 6591

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

6592 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 6593

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

6594 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 6595

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

6596 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 6597

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

6598 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 6599

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

6600 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 6601

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

6602 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6603

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

6604 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 6605

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

6606 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 6607

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

6608 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 6609

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

6610 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 6611

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

6612 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 6613

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

6614 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 6615

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

6616 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 6617

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

6618 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 6619

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

6620 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 6621

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

6622 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 6623

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

6624 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 6625

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

6626 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 6627

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

6628 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 6629

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

6630 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 6631

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

6632 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 6633

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

6634 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 6635

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

6636 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 6637

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

6638 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 6639

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

6640 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 6641

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

6642 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 6643

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

6644 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 6645

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

6646 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 6647

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

6648 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 6649

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

6650 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 6651

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

6652 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 6653

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

6654 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 6655

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

6656 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 6657

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

6658 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 6659

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

6660 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 6661

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

6662 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 6663

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

6664 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 6665

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

6666 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 6667

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

6668 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 6669

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

6670 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 6671

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

6672 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 6673

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

6674 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 6675

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

6676 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6677

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

6678 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 6679

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

6680 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 6681

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

6682 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 6683

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

6684 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 6685

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

6686 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 6687

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

6688 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 6689

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

6690 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 6691

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

6692 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 6693

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

6694 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 6695

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

6696 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 6697

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

6698 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 6699

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

6700 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 6701

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

6702 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 6703

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

6704 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 6705

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

6706 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 6707

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

6708 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 6709

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

6710 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 6711

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

6712 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 6713

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

6714 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 6715

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

6716 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 6717

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

6718 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 6719

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

6720 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 6721

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

6722 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 6723

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

6724 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 6725

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

6726 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 6727

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

6728 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 6729

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

6730 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 6731

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

6732 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 6733

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

6734 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 6735

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

6736 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 6737

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

6738 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 6739

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

6740 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 6741

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

6742 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 6743

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

6744 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 6745

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

6746 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 6747

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

6748 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 6749

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

6750 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 6751

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

6752 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 6753

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

6754 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 6755

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

6756 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 6757

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

6758 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 6759

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

6760 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 6761

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

6762 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 6763

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

6764 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 6765

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

6766 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 6767

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

6768 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 6769

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

6770 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 6771

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

6772 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 6773

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

6774 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 6775

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

6776 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 6777

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

6778 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 6779

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

6780 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 6781

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

6782 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 6783

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

6784 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 6785

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

6786 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 6787

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

6788 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 6789

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

6790 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 6791

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

6792 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 6793

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

6794 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 6795

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

6796 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 6797

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

6798 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 6799

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

6800 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 6801

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

6802 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 6803

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

6804 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 6805

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

6806 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6807

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

6808 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 6809

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

6810 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 6811

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

6812 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 6813

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

6814 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 6815

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

6816 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 6817

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

6818 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 6819

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

6820 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 6821

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

6822 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 6823

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

6824 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 6825

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

6826 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 6827

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

6828 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 6829

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

6830 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 6831

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

6832 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 6833

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

6834 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 6835

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

6836 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 6837

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

6838 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 6839

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

6840 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 6841

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

6842 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 6843

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

6844 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 6845

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

6846 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 6847

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

6848 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 6849

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

6850 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 6851

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

6852 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 6853

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

6854 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 6855

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

6856 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 6857

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

6858 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 6859

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

6860 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 6861

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

6862 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 6863

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

6864 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 6865

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

6866 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 6867

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

6868 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 6869

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

6870 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 6871

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

6872 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6873

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

6874 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 6875

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

6876 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 6877

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

6878 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 6879

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

6880 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 6881

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

6882 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 6883

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

6884 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 6885

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

6886 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 6887

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

6888 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 6889

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

6890 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 6891

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

6892 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 6893

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

6894 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 6895

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

6896 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 6897

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

6898 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 6899

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

6900 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 6901

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

6902 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 6903

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

6904 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 6905

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

6906 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 6907

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

6908 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 6909

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

6910 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 6911

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

6912 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 6913

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

6914 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 6915

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

6916 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 6917

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

6918 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 6919

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

6920 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 6921

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

6922 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 6923

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

6924 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 6925

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

6926 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 6927

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

6928 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 6929

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

6930 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 6931

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

6932 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 6933

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

6934 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 6935

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

6936 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 6937

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

6938 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 6939

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

6940 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 6941

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

6942 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 6943

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

6944 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 6945

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

6946 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6947

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

6948 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 6949

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

6950 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 6951

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

6952 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 6953

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

6954 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 6955

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

6956 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 6957

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

6958 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 6959

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

6960 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 6961

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

6962 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 6963

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

6964 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 6965

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

6966 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 6967

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

6968 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 6969

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

6970 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 6971

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

6972 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 6973

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

6974 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 6975

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

6976 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 6977

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

6978 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 6979

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

6980 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 6981

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

6982 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 6983

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

6984 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 6985

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

6986 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 6987

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

6988 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 6989

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

6990 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 6991

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

6992 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 6993

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

6994 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 6995

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

6996 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 6997

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

6998 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 6999

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

7000 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 7001

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

7002 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 7003

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

7004 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 7005

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

7006 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 7007

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

7008 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 7009

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

7010 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 7011

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

7012 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 7013

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

7014 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 7015

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

7016 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 7017

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

7018 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 7019

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

7020 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7021

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

7022 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 7023

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

7024 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 7025

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

7026 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 7027

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

7028 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 7029

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

7030 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 7031

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

7032 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 7033

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

7034 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 7035

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

7036 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 7037

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

7038 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 7039

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

7040 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 7041

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

7042 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7043

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

7044 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 7045

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

7046 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 7047

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

7048 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 7049

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

7050 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 7051

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

7052 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 7053

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

7054 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 7055

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

7056 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 7057

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

7058 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 7059

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

7060 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 7061

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

7062 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 7063

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

7064 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 7065

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

7066 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 7067

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

7068 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 7069

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

7070 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 7071

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

7072 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 7073

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

7074 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 7075

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

7076 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7077

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

7078 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 7079

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

7080 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 7081

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

7082 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 7083

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

7084 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 7085

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

7086 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 7087

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

7088 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 7089

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

7090 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 7091

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

7092 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 7093

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

7094 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 7095

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

7096 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 7097

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

7098 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 7099

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

7100 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 7101

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

7102 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 7103

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

7104 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 7105

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

7106 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 7107

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

7108 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 7109

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

7110 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 7111

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

7112 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 7113

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

7114 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 7115

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

7116 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 7117

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

7118 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 7119

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

7120 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 7121

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

7122 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 7123

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

7124 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 7125

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

7126 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 7127

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

7128 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 7129

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

7130 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 7131

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

7132 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 7133

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

7134 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 7135

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

7136 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 7137

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

7138 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 7139

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

7140 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 7141

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

7142 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7143

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

7144 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 7145

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

7146 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 7147

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

7148 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 7149

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

7150 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 7151

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

7152 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 7153

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

7154 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 7155

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

7156 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 7157

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

7158 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 7159

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

7160 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 7161

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

7162 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 7163

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

7164 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 7165

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

7166 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 7167

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

7168 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 7169

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

7170 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 7171

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

7172 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 7173

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

7174 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 7175

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

7176 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 7177

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

7178 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 7179

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

7180 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 7181

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

7182 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7183

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

7184 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 7185

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

7186 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 7187

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

7188 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 7189

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

7190 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 7191

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

7192 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 7193

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

7194 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 7195

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

7196 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 7197

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

7198 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 7199

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

7200 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 7201

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

7202 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 7203

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

7204 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 7205

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

7206 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 7207

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

7208 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 7209

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

7210 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 7211

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

7212 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 7213

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

7214 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 7215

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

7216 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7217

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

7218 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 7219

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

7220 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 7221

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

7222 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 7223

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

7224 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 7225

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

7226 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 7227

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

7228 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 7229

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

7230 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 7231

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

7232 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 7233

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

7234 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 7235

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

7236 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 7237

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

7238 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 7239

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

7240 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 7241

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

7242 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 7243

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

7244 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 7245

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

7246 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 7247

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

7248 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 7249

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

7250 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 7251

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

7252 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 7253

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

7254 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 7255

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

7256 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 7257

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

7258 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 7259

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

7260 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 7261

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

7262 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 7263

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

7264 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 7265

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

7266 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 7267

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

7268 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 7269

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

7270 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 7271

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

7272 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 7273

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

7274 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 7275

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

7276 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 7277

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

7278 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 7279

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

7280 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 7281

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

7282 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 7283

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

7284 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 7285

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

7286 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 7287

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

7288 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 7289

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

7290 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7291

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

7292 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 7293

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

7294 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 7295

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

7296 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 7297

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

7298 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 7299

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

7300 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 7301

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

7302 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 7303

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

7304 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 7305

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

7306 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 7307

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

7308 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 7309

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

7310 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 7311

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

7312 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7313

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

7314 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 7315

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

7316 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 7317

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

7318 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 7319

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

7320 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 7321

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

7322 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 7323

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

7324 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 7325

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

7326 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 7327

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

7328 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 7329

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

7330 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 7331

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

7332 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 7333

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

7334 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 7335

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

7336 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 7337

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

7338 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 7339

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

7340 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 7341

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

7342 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 7343

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

7344 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 7345

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

7346 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7347

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

7348 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 7349

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

7350 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 7351

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

7352 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 7353

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

7354 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 7355

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

7356 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 7357

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

7358 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 7359

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

7360 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 7361

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

7362 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 7363

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

7364 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 7365

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

7366 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 7367

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

7368 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 7369

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

7370 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 7371

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

7372 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 7373

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

7374 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 7375

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

7376 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 7377

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

7378 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 7379

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

7380 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 7381

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

7382 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 7383

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

7384 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 7385

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

7386 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 7387

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

7388 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 7389

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

7390 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 7391

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

7392 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 7393

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

7394 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 7395

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

7396 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 7397

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

7398 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 7399

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

7400 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 7401

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

7402 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 7403

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

7404 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 7405

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

7406 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 7407

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

7408 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 7409

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

7410 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 7411

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

7412 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7413

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

7414 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 7415

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

7416 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 7417

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

7418 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 7419

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

7420 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 7421

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

7422 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 7423

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

7424 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 7425

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

7426 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 7427

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

7428 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 7429

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

7430 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 7431

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

7432 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 7433

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

7434 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 7435

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

7436 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 7437

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

7438 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 7439

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

7440 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 7441

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

7442 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 7443

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

7444 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 7445

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

7446 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 7447

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

7448 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 7449

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

7450 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 7451

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

7452 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7453

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

7454 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 7455

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

7456 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 7457

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

7458 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 7459

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

7460 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 7461

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

7462 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 7463

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

7464 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 7465

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

7466 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 7467

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

7468 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 7469

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

7470 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 7471

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

7472 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 7473

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

7474 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 7475

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

7476 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 7477

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

7478 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 7479

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

7480 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 7481

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

7482 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 7483

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

7484 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 7485

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

7486 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7487

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

7488 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 7489

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

7490 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 7491

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

7492 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 7493

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

7494 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 7495

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

7496 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 7497

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

7498 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 7499

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

7500 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 7501

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

7502 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 7503

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

7504 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 7505

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

7506 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 7507

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

7508 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 7509

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

7510 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 7511

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

7512 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 7513

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

7514 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 7515

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

7516 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 7517

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

7518 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 7519

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

7520 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 7521

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

7522 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 7523

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

7524 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 7525

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

7526 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 7527

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

7528 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 7529

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

7530 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 7531

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

7532 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 7533

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

7534 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 7535

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

7536 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 7537

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

7538 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 7539

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

7540 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 7541

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

7542 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 7543

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

7544 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 7545

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

7546 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 7547

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

7548 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 7549

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

7550 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 7551

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

7552 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 7553

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

7554 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 7555

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

7556 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 7557

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

7558 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 7559

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

7560 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7561

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

7562 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 7563

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

7564 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 7565

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

7566 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 7567

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

7568 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 7569

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

7570 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 7571

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

7572 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 7573

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

7574 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 7575

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

7576 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 7577

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

7578 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 7579

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

7580 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 7581

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

7582 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7583

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

7584 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 7585

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

7586 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 7587

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

7588 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 7589

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

7590 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 7591

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

7592 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 7593

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

7594 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 7595

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

7596 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 7597

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

7598 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 7599

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

7600 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 7601

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

7602 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 7603

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

7604 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 7605

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

7606 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 7607

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

7608 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 7609

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

7610 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 7611

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

7612 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 7613

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

7614 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 7615

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

7616 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7617

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

7618 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 7619

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

7620 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 7621

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

7622 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 7623

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

7624 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 7625

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

7626 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 7627

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

7628 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 7629

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

7630 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 7631

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

7632 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 7633

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

7634 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 7635

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

7636 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 7637

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

7638 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 7639

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

7640 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 7641

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

7642 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 7643

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

7644 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 7645

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

7646 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 7647

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

7648 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 7649

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

7650 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 7651

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

7652 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 7653

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

7654 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 7655

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

7656 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 7657

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

7658 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 7659

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

7660 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 7661

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

7662 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 7663

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

7664 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 7665

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

7666 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 7667

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

7668 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 7669

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

7670 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 7671

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

7672 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 7673

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

7674 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 7675

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

7676 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 7677

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

7678 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 7679

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

7680 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 7681

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

7682 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7683

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

7684 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 7685

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

7686 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 7687

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

7688 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 7689

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

7690 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 7691

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

7692 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 7693

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

7694 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 7695

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

7696 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 7697

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

7698 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 7699

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

7700 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 7701

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

7702 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 7703

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

7704 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 7705

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

7706 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 7707

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

7708 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 7709

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

7710 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 7711

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

7712 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 7713

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

7714 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 7715

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

7716 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 7717

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

7718 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 7719

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

7720 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 7721

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

7722 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7723

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

7724 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 7725

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

7726 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 7727

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

7728 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 7729

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

7730 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 7731

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

7732 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 7733

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

7734 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 7735

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

7736 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 7737

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

7738 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 7739

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

7740 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 7741

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

7742 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 7743

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

7744 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 7745

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

7746 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 7747

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

7748 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 7749

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

7750 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 7751

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

7752 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 7753

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

7754 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 7755

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

7756 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7757

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

7758 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 7759

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

7760 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 7761

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

7762 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 7763

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

7764 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 7765

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

7766 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 7767

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

7768 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 7769

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

7770 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 7771

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

7772 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 7773

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

7774 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 7775

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

7776 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 7777

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

7778 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 7779

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

7780 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 7781

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

7782 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 7783

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

7784 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 7785

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

7786 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 7787

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

7788 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 7789

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

7790 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 7791

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

7792 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 7793

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

7794 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 7795

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

7796 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 7797

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

7798 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 7799

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

7800 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 7801

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

7802 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 7803

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

7804 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 7805

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

7806 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 7807

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

7808 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 7809

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

7810 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 7811

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

7812 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 7813

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

7814 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 7815

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

7816 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 7817

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

7818 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 7819

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

7820 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 7821

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

7822 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 7823

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

7824 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 7825

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

7826 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 7827

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

7828 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 7829

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

7830 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7831

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

7832 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 7833

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

7834 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 7835

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

7836 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 7837

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

7838 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 7839

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

7840 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 7841

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

7842 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 7843

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

7844 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 7845

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

7846 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 7847

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

7848 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 7849

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

7850 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 7851

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

7852 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7853

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

7854 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 7855

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

7856 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 7857

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

7858 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 7859

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

7860 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 7861

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

7862 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 7863

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

7864 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 7865

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

7866 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 7867

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

7868 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 7869

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

7870 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 7871

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

7872 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 7873

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

7874 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 7875

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

7876 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 7877

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

7878 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 7879

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

7880 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 7881

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

7882 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 7883

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

7884 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 7885

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

7886 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7887

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

7888 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 7889

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

7890 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 7891

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

7892 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 7893

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

7894 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 7895

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

7896 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 7897

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

7898 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 7899

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

7900 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 7901

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

7902 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 7903

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

7904 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 7905

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

7906 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 7907

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

7908 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 7909

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

7910 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 7911

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

7912 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 7913

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

7914 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 7915

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

7916 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 7917

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

7918 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 7919

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

7920 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 7921

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

7922 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 7923

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

7924 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 7925

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

7926 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 7927

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

7928 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 7929

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

7930 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 7931

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

7932 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 7933

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

7934 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 7935

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

7936 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 7937

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

7938 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 7939

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

7940 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 7941

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

7942 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 7943

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

7944 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 7945

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

7946 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 7947

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

7948 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 7949

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

7950 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 7951

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

7952 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7953

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

7954 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 7955

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

7956 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 7957

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

7958 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 7959

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

7960 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 7961

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

7962 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 7963

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

7964 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 7965

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

7966 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 7967

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

7968 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 7969

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

7970 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 7971

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

7972 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 7973

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

7974 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 7975

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

7976 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 7977

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

7978 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 7979

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

7980 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 7981

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

7982 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 7983

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

7984 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 7985

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

7986 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 7987

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

7988 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 7989

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

7990 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 7991

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

7992 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7993

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

7994 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 7995

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

7996 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 7997

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

7998 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 7999

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

8000 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 8001

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

8002 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 8003

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

8004 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 8005

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

8006 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 8007

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

8008 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 8009

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

8010 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 8011

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

8012 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 8013

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

8014 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 8015

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

8016 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 8017

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

8018 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 8019

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

8020 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 8021

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

8022 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 8023

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

8024 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 8025

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

8026 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 8027

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

8028 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 8029

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

8030 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 8031

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

8032 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 8033

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

8034 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 8035

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

8036 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 8037

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

8038 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 8039

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

8040 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 8041

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

8042 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 8043

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

8044 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 8045

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

8046 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 8047

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

8048 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 8049

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

8050 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 8051

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

8052 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 8053

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

8054 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 8055

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

8056 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 8057

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

8058 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 8059

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

8060 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 8061

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

8062 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 8063

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

8064 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 8065

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

8066 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 8067

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

8068 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 8069

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

8070 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 8071

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

8072 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 8073

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

8074 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 8075

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

8076 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 8077

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

8078 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 8079

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

8080 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 8081

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

8082 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 8083

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

8084 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 8085

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

8086 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 8087

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

8088 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 8089

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

8090 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 8091

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

8092 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 8093

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

8094 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 8095

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

8096 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 8097

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

8098 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 8099

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

8100 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 8101

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

8102 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 8103

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

8104 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 8105

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

8106 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 8107

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

8108 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 8109

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

8110 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 8111

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

8112 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 8113

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

8114 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 8115

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

8116 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 8117

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

8118 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 8119

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

8120 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 8121

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

8122 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 8123

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

8124 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 8125

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

8126 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 8127

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

8128 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 8129

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

8130 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 8131

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

8132 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 8133

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

8134 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 8135

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

8136 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 8137

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

8138 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 8139

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

8140 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 8141

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

8142 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 8143

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

8144 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 8145

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

8146 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 8147

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

8148 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 8149

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

8150 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 8151

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

8152 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 8153

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

8154 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 8155

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

8156 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 8157

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

8158 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 8159

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

8160 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 8161

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

8162 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 8163

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

8164 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 8165

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

8166 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 8167

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

8168 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 8169

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

8170 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 8171

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

8172 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 8173

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

8174 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 8175

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

8176 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 8177

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

8178 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 8179

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

8180 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 8181

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

8182 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 8183

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

8184 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 8185

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

8186 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 8187

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

8188 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 8189

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

8190 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 8191

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

8192 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 8193

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

8194 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 8195

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

8196 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 8197

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

8198 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 8199

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

8200 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 8201

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

8202 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 8203

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

8204 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 8205

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

8206 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 8207

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

8208 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 8209

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

8210 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 8211

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

8212 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 8213

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

8214 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 8215

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

8216 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 8217

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

8218 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 8219

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

8220 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 8221

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

8222 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 8223

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

8224 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 8225

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

8226 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 8227

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

8228 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 8229

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

8230 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 8231

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

8232 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 8233

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

8234 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 8235

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

8236 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 8237

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

8238 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 8239

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

8240 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 8241

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

8242 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 8243

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

8244 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 8245

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

8246 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 8247

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

8248 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 8249

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

8250 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 8251

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

8252 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 8253

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

8254 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 8255

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

8256 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 8257

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

8258 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 8259

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

8260 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 8261

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

8262 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 8263

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

8264 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 8265

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

8266 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 8267

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

8268 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 8269

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

8270 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 8271

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

8272 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 8273

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

8274 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 8275

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

8276 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 8277

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

8278 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 8279

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

8280 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 8281

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

8282 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 8283

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

8284 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 8285

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

8286 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 8287

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

8288 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 8289

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

8290 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 8291

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

8292 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 8293

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

8294 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 8295

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

8296 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 8297

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

8298 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 8299

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

8300 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 8301

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

8302 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 8303

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

8304 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 8305

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

8306 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 8307

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

8308 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 8309

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

8310 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 8311

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

8312 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 8313

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

8314 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 8315

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

8316 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 8317

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

8318 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 8319

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

8320 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 8321

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

8322 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 8323

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

8324 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 8325

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

8326 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 8327

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

8328 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 8329

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

8330 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 8331

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

8332 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 8333

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

8334 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 8335

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

8336 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 8337

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

8338 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 8339

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

8340 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 8341

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

8342 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 8343

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

8344 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 8345

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

8346 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 8347

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

8348 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 8349

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

8350 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 8351

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

8352 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 8353

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

8354 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 8355

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

8356 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 8357

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

8358 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 8359

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

8360 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 8361

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

8362 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 8363

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

8364 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 8365

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

8366 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 8367

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

8368 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 8369

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

8370 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 8371

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

8372 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 8373

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

8374 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 8375

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

8376 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 8377

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

8378 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 8379

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

8380 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 8381

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

8382 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 8383

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

8384 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 8385

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

8386 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 8387

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

8388 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 8389

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

8390 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 8391

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

8392 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 8393

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

8394 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 8395

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

8396 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 8397

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

8398 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 8399

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

8400 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 8401

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

8402 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 8403

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

8404 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 8405

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

8406 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 8407

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

8408 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 8409

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

8410 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 8411

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

8412 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 8413

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

8414 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 8415

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

8416 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 8417

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

8418 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 8419

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

8420 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 8421

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

8422 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 8423

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

8424 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 8425

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

8426 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 8427

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

8428 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 8429

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

8430 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 8431

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

8432 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 8433

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

8434 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 8435

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

8436 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 8437

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

8438 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 8439

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

8440 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 8441

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

8442 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 8443

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

8444 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 8445

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

8446 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 8447

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

8448 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 8449

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

8450 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 8451

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

8452 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 8453

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

8454 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 8455

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

8456 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 8457

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

8458 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 8459

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

8460 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 8461

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

8462 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 8463

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

8464 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 8465

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

8466 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 8467

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

8468 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 8469

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

8470 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 8471

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

8472 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 8473

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

8474 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 8475

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

8476 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 8477

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

8478 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 8479

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

8480 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 8481

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

8482 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 8483

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

8484 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 8485

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

8486 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 8487

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

8488 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 8489

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

8490 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 8491

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

8492 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 8493

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

8494 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 8495

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

8496 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 8497

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

8498 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 8499

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

8500 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 8501

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

8502 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 8503

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

8504 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 8505

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

8506 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 8507

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

8508 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 8509

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

8510 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 8511

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

8512 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 8513

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

8514 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 8515

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

8516 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 8517

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

8518 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 8519

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

8520 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 8521

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

8522 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 8523

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

8524 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 8525

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

8526 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 8527

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

8528 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 8529

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

8530 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 8531

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

8532 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 8533

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

8534 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 8535

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

8536 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 8537

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

8538 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 8539

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

8540 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 8541

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

8542 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 8543

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

8544 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 8545

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

8546 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 8547

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

8548 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 8549

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

8550 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 8551

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

8552 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 8553

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

8554 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 8555

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

8556 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 8557

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

8558 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 8559

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

8560 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 8561

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

8562 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 8563

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

8564 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 8565

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

8566 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 8567

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

8568 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 8569

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

8570 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 8571

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

8572 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 8573

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

8574 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 8575

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

8576 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 8577

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

8578 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 8579

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

8580 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 8581

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

8582 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 8583

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

8584 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 8585

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

8586 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 8587

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

8588 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 8589

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

8590 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 8591

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

8592 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 8593

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

8594 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 8595

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

8596 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 8597

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

8598 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 8599

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

8600 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 8601

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

8602 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 8603

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

8604 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 8605

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

8606 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 8607

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

8608 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 8609

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

8610 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 8611

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

8612 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 8613

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

8614 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 8615

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

8616 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 8617

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

8618 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 8619

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

8620 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 8621

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

8622 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 8623

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

8624 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 8625

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

8626 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

1.1. Welcome to Merchant’s documentation! 8627

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

8628 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 8629

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

8630 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 8631

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

8632 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 8633

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

8634 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 8635

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

8636 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 8637

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

8638 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 8639

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

8640 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 8641

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

8642 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 8643

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

8644 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

1.1. Welcome to Merchant’s documentation! 8645

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

8646 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 8647

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

8648 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 8649

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

8650 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 8651

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

8652 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 8653

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

8654 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 8655

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

8656 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 8657

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

8658 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 8659

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

8660 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 8661

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

8662 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 8663

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

8664 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 8665

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

8666 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 8667

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

8668 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

1.1. Welcome to Merchant’s documentation! 8669

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

8670 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 8671

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

8672 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 8673

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

8674 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 8675

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

8676 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 8677

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

8678 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 8679

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

8680 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 8681

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

8682 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 8683

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

8684 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 8685

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

8686 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 8687

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

8688 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

1.1. Welcome to Merchant’s documentation! 8689

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

8690 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

1.1. Welcome to Merchant’s documentation! 8691

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

8692 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 8693

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

8694 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 8695

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

8696 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 8697

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

8698 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 8699

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

8700 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 8701

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

8702 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 8703

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

8704 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 8705

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

8706 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 8707

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

8708 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 8709

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

8710 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 8711

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

8712 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 8713

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

8714 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 8715

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

8716 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 8717

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

8718 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

1.1. Welcome to Merchant’s documentation! 8719

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

8720 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 8721

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

8722 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 8723

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

8724 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 8725

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

8726 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 8727

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

8728 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

1.1. Welcome to Merchant’s documentation! 8729

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

8730 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 8731

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

8732 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 8733

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

8734 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 8735

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

8736 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 8737

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

8738 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 8739

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

8740 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 8741

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

8742 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

1.1. Welcome to Merchant’s documentation! 8743

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

8744 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

1.1. Welcome to Merchant’s documentation! 8745

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

8746 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 8747

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

8748 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

1.1. Welcome to Merchant’s documentation! 8749

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

8750 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 8751

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

8752 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 8753

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

8754 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.1. Welcome to Merchant’s documentation! 8755

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

8756 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 8757

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

8758 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 8759

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

8760 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 8761

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}

8762 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 8763

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

8764 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1.1. Welcome to Merchant’s documentation! 8765

http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

8766 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 8767

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

8768 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 8769

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}

8770 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 8771

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

8772 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 8773

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

8774 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 8775

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

8776 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 8777

Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

8778 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 8779

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

8780 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 8781

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

8782 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 8783

Merchant Documentation Documentation, Release 0.09a

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

8784 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 8785

Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

8786 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 8787

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

8788 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 8789

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

8790 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

1.1. Welcome to Merchant’s documentation! 8791

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

8792 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 8793

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

8794 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

1.1. Welcome to Merchant’s documentation! 8795

Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

8796 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 8797

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

8798 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 8799

Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.

8800 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 8801

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

8802 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 8803

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

8804 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 8805

Merchant Documentation Documentation, Release 0.09a

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

8806 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 8807

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

8808 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 8809

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

8810 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 8811

Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

8812 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

1.1. Welcome to Merchant’s documentation! 8813

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

8814 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 8815

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

8816 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 8817

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

8818 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 8819

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

8820 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 8821

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

8822 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 8823

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

8824 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 8825

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

8826 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 8827

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

8828 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 8829

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

8830 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 8831

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

8832 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

1.1. Welcome to Merchant’s documentation! 8833

http://www.chargebee.com/

Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

8834 Chapter 1. Welcome to Merchant’s documentation!

http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 8835

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

8836 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 8837

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

8838 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

1.1. Welcome to Merchant’s documentation! 8839

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

8840 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 8841

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

8842 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

1.1. Welcome to Merchant’s documentation! 8843

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

8844 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 8845

Merchant Documentation Documentation, Release 0.09a

this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

8846 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 8847

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

8848 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

1.1. Welcome to Merchant’s documentation! 8849

Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

8850 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 8851

Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

8852 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1.1. Welcome to Merchant’s documentation! 8853

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

8854 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 8855

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

8856 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 8857

Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

8858 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 8859

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

8860 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.1. Welcome to Merchant’s documentation! 8861

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

8862 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 8863

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",

8864 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 8865

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

8866 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 8867

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

8868 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 8869

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

8870 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 8871

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

8872 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 8873

Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

8874 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 8875

Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the

8876 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 8877

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration

8878 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 8879

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

8880 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 8881

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

...
else:

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

8882 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 8883

Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

8884 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 8885

Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

8886 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 8887

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

8888 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 8889

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

8890 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

1.1. Welcome to Merchant’s documentation! 8891

Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors

Merchant, is a django app that offers a uniform api and pluggable interface to interact with a variety of payment
processors. It is heavily inspired from Ruby’s ActiveMerchant.

Overview

Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant

You can use any of the following methods to install merchant.

8892 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card

The CreditCard class is a helper class with some useful methods mainly for validation. This class is available in
billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

1.1. Welcome to Merchant’s documentation! 8893

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

8894 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways

Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it is easy to
extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 8895

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

8896 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing

Onsite processing refers to the payment mechanism where the customer stays on the merchant website and the authen-
tication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway

This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

1.1. Welcome to Merchant’s documentation! 8897

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream

Beanstream is a gateway headquartered in Canada and offering payment processing across North America.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}

8898 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

...
}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway

The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 8899

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server

Braintree Payments Server to Server is a gateway provided by Braintree Payments to services which are willing to
take the burden of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the
background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

8900 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee

Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality to plug to
multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

1.1. Welcome to Merchant’s documentation! 8901

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway

The eWay gateway implements the eWay Hosted Payment API.

8902 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx

Merchant Documentation Documentation, Release 0.09a

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway

Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 8903

http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway

Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]

8904 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments

Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden of PCI compliance.
This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD

1.1. Welcome to Merchant’s documentation! 8905

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments

WePay.com is a service that lets you accept payments not just from credit cards but also from bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",

8906 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month

1.1. Welcome to Merchant’s documentation! 8907

Merchant Documentation Documentation, Release 0.09a

def we_pay_recurring(request):
options = {"period": "monthly", "start_time": "2012-01-01",

"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing

Off-site processing is the payment mechanism where the customer is redirected to the payment gateways site to com-
plete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

8908 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard

PayPal Website Payments Standard (PWS) is an offsite payment processor. This method of payment is implemented
in merchant as a wrapper on top of django-paypal. You need to install the package to be able to use this payment
processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

1.1. Welcome to Merchant’s documentation! 8909

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay

WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee PCI compli-
ance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

8910 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />

1.1. Welcome to Merchant’s documentation! 8911

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service

Amazon FPS, is a service that allows for building very flexible payment systems. The service can be classified as a
part Gateway and part Integration (offsite processor). This is because the customer is redirected to the Amazon site
where he authorizes the payment and after this the customer is redirected back to the merchant site with a token that is
used by the merchant to transact with the customer. In plain offsite processors, the authorization and transaction take
place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

8912 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,

1.1. Welcome to Merchant’s documentation! 8913

Merchant Documentation Documentation, Release 0.09a

reverse("fps_return_url")),
}

You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect

Braintree Payments Transparent Redirect is a service offered by Braintree Payments to reduce the complexity of PCI
compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

8914 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling

Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration

Stripe Payment Integration is a service offered by Stripe Payment to reduce the complexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

1.1. Welcome to Merchant’s documentation! 8915

http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data
https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration

The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Payments facility. Their service makes
it extremely easy to be PCI-DSS compliant by allowing you to never receive customer credit card information.

8916 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

1.1. Welcome to Merchant’s documentation! 8917

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

8918 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 8919

Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method

Authorize.Net Direct Post Method is a service offered by Authorize.Net to reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

8920 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals

The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

1.1. Welcome to Merchant’s documentation! 8921

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway

Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):

8922 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant

While we make all attempts to cover most of the functionality of the payment processors but may fall short sometimes.
There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",

1.1. Welcome to Merchant’s documentation! 8923

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant

While there is no requirement for you to contribute your new gateway code or changes back to the upstream project,
you can play a good samaritan by contributing back to the project and helping scores of people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

8924 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 8925

Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

8926 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors

Merchant, is a django app that offers a uniform api and pluggable interface to interact with a variety of payment
processors. It is heavily inspired from Ruby’s ActiveMerchant.

Overview

Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant

You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 8927

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration

To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a look at
local.py-dist for reference.

Running the Test Suite

By default, the test suite is configured to run tests for all the gateways and integrations which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card

The CreditCard class is a helper class with some useful methods mainly for validation. This class is available in
billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

8928 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses

Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gateway.validate_card() which
will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

1.1. Welcome to Merchant’s documentation! 8929

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways

Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it is easy to
extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

8930 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

1.1. Welcome to Merchant’s documentation! 8931

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing

Onsite processing refers to the payment mechanism where the customer stays on the merchant website and the authen-
tication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

8932 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

Merchant Documentation Documentation, Release 0.09a

Authorize.Net Gateway

This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream

Beanstream is a gateway headquartered in Canada and offering payment processing across North America.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 8933

http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway

The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

8934 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server

Braintree Payments Server to Server is a gateway provided by Braintree Payments to services which are willing to
take the burden of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the
background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",

1.1. Welcome to Merchant’s documentation! 8935

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee

Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality to plug to
multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

8936 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html

Merchant Documentation Documentation, Release 0.09a

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction

1.1. Welcome to Merchant’s documentation! 8937

https:/

Merchant Documentation Documentation, Release 0.09a

>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway

The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway

Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

8938 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds

Merchant Documentation Documentation, Release 0.09a

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway

Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

1.1. Welcome to Merchant’s documentation! 8939

https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro

Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments

Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden of PCI compliance.
This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

8940 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments

WePay.com is a service that lets you accept payments not just from credit cards but also from bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

1.1. Welcome to Merchant’s documentation! 8941

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]

8942 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing

Off-site processing is the payment mechanism where the customer is redirected to the payment gateways site to com-
plete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration

An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view, an Integration
renders a form (usually with hidden fields) through a template tag. An integration may also support asynchronous and
real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

1.1. Welcome to Merchant’s documentation! 8943

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard

PayPal Website Payments Standard (PWS) is an offsite payment processor. This method of payment is implemented
in merchant as a wrapper on top of django-paypal. You need to install the package to be able to use this payment
processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode

By default the form renders in test mode with POST against sandbox.paypal.com. Add following to you set-
tings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

8944 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example

In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

1.1. Welcome to Merchant’s documentation! 8945

Merchant Documentation Documentation, Release 0.09a

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay

WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee PCI compli-
ance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example

In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

8946 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service

Amazon FPS, is a service that allows for building very flexible payment systems. The service can be classified as a
part Gateway and part Integration (offsite processor). This is because the customer is redirected to the Amazon site
where he authorizes the payment and after this the customer is redirected back to the merchant site with a token that is
used by the merchant to transact with the customer. In plain offsite processors, the authorization and transaction take
place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

1.1. Welcome to Merchant’s documentation! 8947

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example

In any app that is present in the settings.INSTALLED_APPS, subclass the AmazonFpsIntegration
and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

8948 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

Braintree Payments Transparent Redirect

Braintree Payments Transparent Redirect is a service offered by Braintree Payments to reduce the complexity of PCI

1.1. Welcome to Merchant’s documentation! 8949

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/

Merchant Documentation Documentation, Release 0.09a

compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

8950 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration

Stripe Payment Integration is a service offered by Stripe Payment to reduce the complexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

1.1. Welcome to Merchant’s documentation! 8951

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration

The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Payments facility. Their service makes
it extremely easy to be PCI-DSS compliant by allowing you to never receive customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

8952 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

1.1. Welcome to Merchant’s documentation! 8953

Merchant Documentation Documentation, Release 0.09a

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

8954 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:

views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

1.1. Welcome to Merchant’s documentation! 8955

Merchant Documentation Documentation, Release 0.09a

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method

Authorize.Net Direct Post Method is a service offered by Authorize.Net to reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

8956 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals

The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

1.1. Welcome to Merchant’s documentation! 8957

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway

Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

8958 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Customizing Merchant

While we make all attempts to cover most of the functionality of the payment processors but may fall short sometimes.
There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant

While there is no requirement for you to contribute your new gateway code or changes back to the upstream project,
you can play a good samaritan by contributing back to the project and helping scores of people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

1.1. Welcome to Merchant’s documentation! 8959

https://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

8960 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 8961

Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1.2 Indices and tables

• genindex

• modindex

• search

1.1.3 Merchant: Pluggable and Unified API for Payment Processors

Merchant, is a django app that offers a uniform api and pluggable interface to interact with a variety of payment
processors. It is heavily inspired from Ruby’s ActiveMerchant.

8962 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

1.1.4 Overview

Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

1.1.5 Installing Merchant

You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

1.1. Welcome to Merchant’s documentation! 8963

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

Configuration

To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a look at
local.py-dist for reference.

Running the Test Suite

By default, the test suite is configured to run tests for all the gateways and integrations which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

1.1.6 Credit Card

The CreditCard class is a helper class with some useful methods mainly for validation. This class is available in
billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

8964 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses

Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gateway.validate_card() which
will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

1.1. Welcome to Merchant’s documentation! 8965

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

1.1.7 Gateways

Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it is easy to
extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

8966 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

1.1. Welcome to Merchant’s documentation! 8967

Merchant Documentation Documentation, Release 0.09a

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

1.1.8 On-site Processing

Onsite processing refers to the payment mechanism where the customer stays on the merchant website and the authen-
tication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

1.1.9 Authorize.Net Gateway

This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

8968 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1.10 Beanstream

Beanstream is a gateway headquartered in Canada and offering payment processing across North America.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}

1.1. Welcome to Merchant’s documentation! 8969

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

...
}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

1.1.11 Bitcoin Gateway

The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer

8970 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1.12 Braintree Payments Server to Server

Braintree Payments Server to Server is a gateway provided by Braintree Payments to services which are willing to
take the burden of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the
background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success

1.1. Welcome to Merchant’s documentation! 8971

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

1.1.13 Chargebee

Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality to plug to
multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {

8972 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

1.1. Welcome to Merchant’s documentation! 8973

Merchant Documentation Documentation, Release 0.09a

1.1.14 eWay Gateway

The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1.15 Paylane Gateway

Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {

8974 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

1.1.16 PayPal Gateway

Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

1.1. Welcome to Merchant’s documentation! 8975

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

1.1.17 Stripe Payments

Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden of PCI compliance.
This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

8976 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

1.1.18 WePay Payments

WePay.com is a service that lets you accept payments not just from credit cards but also from bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments

1.1. Welcome to Merchant’s documentation! 8977

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15

8978 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

1.1.19 Off-site Processing

Off-site processing is the payment mechanism where the customer is redirected to the payment gateways site to com-
plete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration

An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view, an Integration
renders a form (usually with hidden fields) through a template tag. An integration may also support asynchronous and
real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

1.1. Welcome to Merchant’s documentation! 8979

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function

Very much like Gateways, Integrations have a method of easily referencing the corresponding integration class through
the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

1.1.20 PayPal Website Payments Standard

PayPal Website Payments Standard (PWS) is an offsite payment processor. This method of payment is implemented
in merchant as a wrapper on top of django-paypal. You need to install the package to be able to use this payment
processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode

By default the form renders in test mode with POST against sandbox.paypal.com. Add following to you set-
tings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

8980 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example

In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />

1.1. Welcome to Merchant’s documentation! 8981

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1.21 WorldPay

WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee PCI compli-
ance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example

In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",

8982 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... {"obj": world_pay},

... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

1.1.22 Amazon Flexible Payment Service

Amazon FPS, is a service that allows for building very flexible payment systems. The service can be classified as a
part Gateway and part Integration (offsite processor). This is because the customer is redirected to the Amazon site
where he authorizes the payment and after this the customer is redirected back to the merchant site with a token that is
used by the merchant to transact with the customer. In plain offsite processors, the authorization and transaction take
place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",

1.1. Welcome to Merchant’s documentation! 8983

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

"AWS_SECRET_ACCESS_KEY": "???"
}

}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example

In any app that is present in the settings.INSTALLED_APPS, subclass the AmazonFpsIntegration
and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

8984 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

1.1.23 Braintree Payments Transparent Redirect

Braintree Payments Transparent Redirect is a service offered by Braintree Payments to reduce the complexity of PCI
compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1.1. Welcome to Merchant’s documentation! 8985

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

8986 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

1.1.24 Stripe Payment Integration

Stripe Payment Integration is a service offered by Stripe Payment to reduce the complexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

1.1. Welcome to Merchant’s documentation! 8987

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

1.1.25 eWAY Payment Integration

The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Payments facility. Their service makes
it extremely easy to be PCI-DSS compliant by allowing you to never receive customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

8988 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

1.1. Welcome to Merchant’s documentation! 8989

Merchant Documentation Documentation, Release 0.09a

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

8990 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Example:

views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

1.1.26 Authorize.Net Direct Post Method

Authorize.Net Direct Post Method is a service offered by Authorize.Net to reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

1.1. Welcome to Merchant’s documentation! 8991

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

8992 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1.27 Signals

The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1.28 Writing a new gateway

Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

1.1. Welcome to Merchant’s documentation! 8993

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

1.1.29 Customizing Merchant

While we make all attempts to cover most of the functionality of the payment processors but may fall short sometimes.
There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

8994 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1.30 Contributing to Merchant

While there is no requirement for you to contribute your new gateway code or changes back to the upstream project,
you can play a good samaritan by contributing back to the project and helping scores of people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

1.1.31 Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 8995

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

8996 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

1.1. Welcome to Merchant’s documentation! 8997

Merchant Documentation Documentation, Release 0.09a

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.2 Indices and tables

• genindex

• modindex

• search

1.3 Merchant: Pluggable and Unified API for Payment Processors

Merchant, is a django app that offers a uniform api and pluggable interface to interact with a variety of payment
processors. It is heavily inspired from Ruby’s ActiveMerchant.

1.4 Overview

Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

8998 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

1.5 Installing Merchant

You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

1.5.1 Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

1.5.2 Configuration

To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a look at
local.py-dist for reference.

1.5.3 Running the Test Suite

By default, the test suite is configured to run tests for all the gateways and integrations which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

1.5. Installing Merchant 8999

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

1.6 Credit Card

The CreditCard class is a helper class with some useful methods mainly for validation. This class is available in
billing.utils.credit_card.

1.6.1 Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.6.2 Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

1.6.3 Subclasses

Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gateway.validate_card() which
will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

9000 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.6. Credit Card 9001

Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

1.7 Gateways

Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it is easy to
extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.7.1 Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

1.7.2 Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

9002 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

1.7. Gateways 9003

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

1.7.3 Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

1.8 On-site Processing

Onsite processing refers to the payment mechanism where the customer stays on the merchant website and the authen-
tication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

1.9 Authorize.Net Gateway

This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.9.1 Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>

9004 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.10 Beanstream

Beanstream is a gateway headquartered in Canada and offering payment processing across North America.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

1.10.1 Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

1.10. Beanstream 9005

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

1.11 Bitcoin Gateway

The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.11.1 Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.12 Braintree Payments Server to Server

Braintree Payments Server to Server is a gateway provided by Braintree Payments to services which are willing to
take the burden of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the
background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

9006 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

1.12.1 Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success

1.12. Braintree Payments Server to Server 9007

Merchant Documentation Documentation, Release 0.09a

True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

1.13 Chargebee

Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality to plug to
multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.13.1 Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

9008 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

1.14 eWay Gateway

The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

1.14.1 Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",

1.14. eWay Gateway 9009

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.15 Paylane Gateway

Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

1.15.1 Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

9010 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

1.16 PayPal Gateway

Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

1.16.1 Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

1.16. PayPal Gateway 9011

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

1.17 Stripe Payments

Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden of PCI compliance.
This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

1.17.1 Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD

9012 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

1.18 WePay Payments

WePay.com is a service that lets you accept payments not just from credit cards but also from bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}

1.18. WePay Payments 9013

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

...
}

1.18.1 Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",

9014 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/redirect/success/"}
resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

1.19 Off-site Processing

Off-site processing is the payment mechanism where the customer is redirected to the payment gateways site to com-
plete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

1.19.1 Integration

An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view, an Integration
renders a form (usually with hidden fields) through a template tag. An integration may also support asynchronous and
real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.19. Off-site Processing 9015

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

Helper Function

Very much like Gateways, Integrations have a method of easily referencing the corresponding integration class through
the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

1.20 PayPal Website Payments Standard

PayPal Website Payments Standard (PWS) is an offsite payment processor. This method of payment is implemented
in merchant as a wrapper on top of django-paypal. You need to install the package to be able to use this payment
processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.20.1 Test or Live Mode

By default the form renders in test mode with POST against sandbox.paypal.com. Add following to you set-
tings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

9016 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

1.20.2 Example

In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />

1.20. PayPal Website Payments Standard 9017

Merchant Documentation Documentation, Release 0.09a

<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />
</form>

1.21 WorldPay

WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee PCI compli-
ance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

1.21.1 Example

In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

9018 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

1.22 Amazon Flexible Payment Service

Amazon FPS, is a service that allows for building very flexible payment systems. The service can be classified as a
part Gateway and part Integration (offsite processor). This is because the customer is redirected to the Amazon site
where he authorizes the payment and after this the customer is redirected back to the merchant site with a token that is
used by the merchant to transact with the customer. In plain offsite processors, the authorization and transaction take
place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

1.22. Amazon Flexible Payment Service 9019

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

1.22.1 Example

In any app that is present in the settings.INSTALLED_APPS, subclass the AmazonFpsIntegration
and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the

9020 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

Amazon FPS admin dashboard for the notification URL
)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

1.23 Braintree Payments Transparent Redirect

Braintree Payments Transparent Redirect is a service offered by Braintree Payments to reduce the complexity of PCI
compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

1.23. Braintree Payments Transparent Redirect 9021

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

1.23.1 Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

9022 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

{% load render_integration from billing_tags %}
{% render_integration bp %}

1.24 Stripe Payment Integration

Stripe Payment Integration is a service offered by Stripe Payment to reduce the complexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

1.24.1 Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:
Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

1.24. Stripe Payment Integration 9023

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

1.25 eWAY Payment Integration

The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Payments facility. Their service makes
it extremely easy to be PCI-DSS compliant by allowing you to never receive customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

9024 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

1.25. eWAY Payment Integration 9025

Merchant Documentation Documentation, Release 0.09a

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

9026 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

1.25.1 Example:

views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

1.26 Authorize.Net Direct Post Method

Authorize.Net Direct Post Method is a service offered by Authorize.Net to reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

1.26. Authorize.Net Direct Post Method 9027

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.26.1 Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

9028 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.27 Signals

The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.28 Writing a new gateway

Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

1.27. Signals 9029

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

1.29 Customizing Merchant

While we make all attempts to cover most of the functionality of the payment processors but may fall short sometimes.
There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

9030 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.30 Contributing to Merchant

While there is no requirement for you to contribute your new gateway code or changes back to the upstream project,
you can play a good samaritan by contributing back to the project and helping scores of people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

1.31 Changes

1.31.1 0.4 (upcoming)

• Added python3 support

• Removed google checkout

1.31.2 0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.30. Contributing to Merchant 9031

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

1.31.3 0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

1.31.4 0.1

• Added PIN payments support

1.31.5 0.09

• Removed Samurai gateway and integration

1.31.6 0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

1.31.7 0.07

• Added Chargebee support

• Added Beanstream gateway

1.31.8 0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.31.9 0.05

• Added Paylane gateway support.

9032 Chapter 1. Welcome to Merchant’s documentation!

Merchant Documentation Documentation, Release 0.09a

1.31.10 0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.31.11 0.03

• Added support for Stripe and Samurai gateways and integrations.

1.31.12 0.02

• Added a setup.py and uploaded the package to pypi

1.31.13 0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

1.31. Changes 9033

Merchant Documentation Documentation, Release 0.09a

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

9034 Chapter 1. Welcome to Merchant’s documentation!

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

9035

Merchant Documentation Documentation, Release 0.09a

9036 Chapter 2. Indices and tables

CHAPTER 3

Merchant: Pluggable and Unified API for Payment Processors

Merchant, is a django app that offers a uniform api and pluggable interface to interact with a variety of payment
processors. It is heavily inspired from Ruby’s ActiveMerchant.

9037

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/

Merchant Documentation Documentation, Release 0.09a

9038 Chapter 3. Merchant: Pluggable and Unified API for Payment Processors

CHAPTER 4

Overview

Simple how to:

settings.py
Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

9039

Merchant Documentation Documentation, Release 0.09a

9040 Chapter 4. Overview

CHAPTER 5

Installing Merchant

You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

5.1 Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

5.2 Configuration

To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a look at
local.py-dist for reference.

5.3 Running the Test Suite

By default, the test suite is configured to run tests for all the gateways and integrations which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

9041

http://pypi.python.org/pypi/django-merchant

Merchant Documentation Documentation, Release 0.09a

9042 Chapter 5. Installing Merchant

CHAPTER 6

Credit Card

The CreditCard class is a helper class with some useful methods mainly for validation. This class is available in
billing.utils.credit_card.

6.1 Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

6.2 Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

9043

Merchant Documentation Documentation, Release 0.09a

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

6.3 Subclasses

Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gateway.validate_card() which
will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

6.3.1 Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

6.3.2 Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

9044 Chapter 6. Credit Card

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

6.3.3 Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

6.3. Subclasses 9045

Merchant Documentation Documentation, Release 0.09a

9046 Chapter 6. Credit Card

CHAPTER 7

Gateways

Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it is easy to
extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

7.1 Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

7.2 Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

9047

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

9048 Chapter 7. Gateways

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Merchant Documentation Documentation, Release 0.09a

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

7.3 Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

7.3. Helper functions 9049

Merchant Documentation Documentation, Release 0.09a

9050 Chapter 7. Gateways

CHAPTER 8

On-site Processing

Onsite processing refers to the payment mechanism where the customer stays on the merchant website and the authen-
tication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

9051

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

Merchant Documentation Documentation, Release 0.09a

9052 Chapter 8. On-site Processing

CHAPTER 9

Authorize.Net Gateway

This gateway implements the Authorize.Net Advanced Integration Method (AIM).

9.1 Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

9053

http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/

Merchant Documentation Documentation, Release 0.09a

9054 Chapter 9. Authorize.Net Gateway

CHAPTER 10

Beanstream

Beanstream is a gateway headquartered in Canada and offering payment processing across North America.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

10.1 Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,

9055

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream

Merchant Documentation Documentation, Release 0.09a

number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

9056 Chapter 10. Beanstream

CHAPTER 11

Bitcoin Gateway

The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

11.1 Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

9057

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin

Merchant Documentation Documentation, Release 0.09a

9058 Chapter 11. Bitcoin Gateway

CHAPTER 12

Braintree Payments Server to Server

Braintree Payments Server to Server is a gateway provided by Braintree Payments to services which are willing to
take the burden of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the
background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

12.1 Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

9059

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/

Merchant Documentation Documentation, Release 0.09a

Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

9060 Chapter 12. Braintree Payments Server to Server

CHAPTER 13

Chargebee

Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality to plug to
multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

13.1 Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

Bill the user for 10 USD per month based on a plan called 'monthly'
The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])

9061

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/

Merchant Documentation Documentation, Release 0.09a

>>> response["response"]["subscription"]["status"]
'cancelled'

Bill the user for 1000 USD
Technically, Chargebee doesn't have a one shot purchase.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

Authorize the card for 100 USD
Technically, Chargebee doesn't have a one shot authorize.
Create a plan (called 'oneshot' below) that does a recurring
subscription with an interval of a decade or more and authorizes
the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

9062 Chapter 13. Chargebee

CHAPTER 14

eWay Gateway

The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

14.1 Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

9063

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

9064 Chapter 14. eWay Gateway

CHAPTER 15

Paylane Gateway

Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

15.1 Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

9065

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl

Merchant Documentation Documentation, Release 0.09a

Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

9066 Chapter 15. Paylane Gateway

CHAPTER 16

PayPal Gateway

Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

16.1 Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

Since merchant relies on django-paypal
you have to additionally provide the
below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>

9067

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/

Merchant Documentation Documentation, Release 0.09a

>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

9068 Chapter 16. PayPal Gateway

CHAPTER 17

Stripe Payments

Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden of PCI compliance.
This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

17.1 Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)

9069

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

>>> response["status"]
SUCCESS

Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

9070 Chapter 17. Stripe Payments

CHAPTER 18

WePay Payments

WePay.com is a service that lets you accept payments not just from credit cards but also from bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

18.1 Example:

Simple usage:

9071

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/

Merchant Documentation Documentation, Release 0.09a

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
Bill the user for 10 USD
Credit card is not required here because the user
is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

Authorize the card for 1000 USD
def we_pay_authorize(request):

Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

Capture funds from a previously authorized transaction
def we_pay_capture(request):

No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

Refund a transaction
def we_pay_refund(request):

Refund completely
resp = wp.credit(None, '<checkout_id>')
...
Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

9072 Chapter 18. WePay Payments

CHAPTER 19

Off-site Processing

Off-site processing is the payment mechanism where the customer is redirected to the payment gateways site to com-
plete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

19.1 Integration

An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view, an Integration
renders a form (usually with hidden fields) through a template tag. An integration may also support asynchronous and
real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

19.1.1 Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

19.1.2 Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

9073

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn

Merchant Documentation Documentation, Release 0.09a

• urls: A property that returns the above method.

19.1.3 Helper Function

Very much like Gateways, Integrations have a method of easily referencing the corresponding integration class through
the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

9074 Chapter 19. Off-site Processing

CHAPTER 20

PayPal Website Payments Standard

PayPal Website Payments Standard (PWS) is an offsite payment processor. This method of payment is implemented
in merchant as a wrapper on top of django-paypal. You need to install the package to be able to use this payment
processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

20.1 Test or Live Mode

By default the form renders in test mode with POST against sandbox.paypal.com. Add following to you set-
tings.py to put the form into live mode:

Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

9075

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal

Merchant Documentation Documentation, Release 0.09a

20.2 Example

In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />

9076 Chapter 20. PayPal Website Payments Standard

Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

20.2. Example 9077

Merchant Documentation Documentation, Release 0.09a

9078 Chapter 20. PayPal Website Payments Standard

CHAPTER 21

WorldPay

WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee PCI compli-
ance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

21.1 Example

In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
You'll have to register /world_pay/rbs-notify-handler/ in the
WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",

9079

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK

Merchant Documentation Documentation, Release 0.09a

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

9080 Chapter 21. WorldPay

CHAPTER 22

Amazon Flexible Payment Service

Amazon FPS, is a service that allows for building very flexible payment systems. The service can be classified as a
part Gateway and part Integration (offsite processor). This is because the customer is redirected to the Amazon site
where he authorizes the payment and after this the customer is redirected back to the merchant site with a token that is
used by the merchant to transact with the customer. In plain offsite processors, the authorization and transaction take
place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary

9081

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/

Merchant Documentation Documentation, Release 0.09a

with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

22.1 Example

In any app that is present in the settings.INSTALLED_APPS, subclass the AmazonFpsIntegration
and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
The class name is based on the filename.
So if the files exists in <app>/integrations/fps_integration.py
then the class name should be FpsIntegration
def transaction(self, request):

Logic to decide if the user should
be charged immediately or funds
authorized and then redirect the user
Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
You'll have to register /amazon_fps/fps-notify-handler/ in the
Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"

9082 Chapter 22. Amazon Flexible Payment Service

Merchant Documentation Documentation, Release 0.09a

if request.is_secure():
url_scheme = "https"

domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
You might want to save the fields["callerReference"] that
is auto-generated in the db or session to uniquely identify
this user (or use the user id as the callerReference) because
amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p>

22.1. Example 9083

Merchant Documentation Documentation, Release 0.09a

9084 Chapter 22. Amazon Flexible Payment Service

CHAPTER 23

Braintree Payments Transparent Redirect

Braintree Payments Transparent Redirect is a service offered by Braintree Payments to reduce the complexity of PCI
compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields

9085

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data

Merchant Documentation Documentation, Release 0.09a

(added through either the add_fields or add_field methods) and tr_data.

23.1 Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

9086 Chapter 23. Braintree Payments Transparent Redirect

CHAPTER 24

Stripe Payment Integration

Stripe Payment Integration is a service offered by Stripe Payment to reduce the complexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

24.1 Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

Redirect if the transaction is successful
...

else:

9087

https://stripe.com
http://pypi.python.org/pypi/stripe/

Merchant Documentation Documentation, Release 0.09a

Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

9088 Chapter 24. Stripe Payment Integration

CHAPTER 25

eWAY Payment Integration

The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Payments facility. Their service makes
it extremely easy to be PCI-DSS compliant by allowing you to never receive customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

9089

https://fedorahosted.org/suds/

Merchant Documentation Documentation, Release 0.09a

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

9090 Chapter 25. eWAY Payment Integration

Merchant Documentation Documentation, Release 0.09a

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

9091

Merchant Documentation Documentation, Release 0.09a

25.1 Example:

views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

9092 Chapter 25. eWAY Payment Integration

CHAPTER 26

Authorize.Net Direct Post Method

Authorize.Net Direct Post Method is a service offered by Authorize.Net to reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

9093

http://developer.authorize.net/api/dpm
http://authorize.net/

Merchant Documentation Documentation, Release 0.09a

26.1 Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

9094 Chapter 26. Authorize.Net Direct Post Method

CHAPTER 27

Signals

The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

9095

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

9096 Chapter 27. Signals

CHAPTER 28

Writing a new gateway

Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

9097

http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

9098 Chapter 28. Writing a new gateway

CHAPTER 29

Customizing Merchant

While we make all attempts to cover most of the functionality of the payment processors but may fall short sometimes.
There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

9099

https://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

9100 Chapter 29. Customizing Merchant

CHAPTER 30

Contributing to Merchant

While there is no requirement for you to contribute your new gateway code or changes back to the upstream project,
you can play a good samaritan by contributing back to the project and helping scores of people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

9101

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant

Merchant Documentation Documentation, Release 0.09a

9102 Chapter 30. Contributing to Merchant

CHAPTER 31

Changes

31.1 0.4 (upcoming)

• Added python3 support

• Removed google checkout

31.2 0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

31.3 0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

31.4 0.1

• Added PIN payments support

31.5 0.09

• Removed Samurai gateway and integration

31.6 0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

9103

Merchant Documentation Documentation, Release 0.09a

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

31.7 0.07

• Added Chargebee support

• Added Beanstream gateway

31.8 0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

31.9 0.05

• Added Paylane gateway support.

31.10 0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

31.11 0.03

• Added support for Stripe and Samurai gateways and integrations.

31.12 0.02

• Added a setup.py and uploaded the package to pypi

9104 Chapter 31. Changes

Merchant Documentation Documentation, Release 0.09a

31.13 0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

31.13. 0.01 9105

Merchant Documentation Documentation, Release 0.09a

9106 Chapter 31. Changes

CHAPTER 32

Indices and tables

• genindex

• modindex

• search

9107

Merchant Documentation Documentation, Release 0.09a

9108 Chapter 32. Indices and tables

Index

C
check_transaction() (built-in function), 42, 76, 109, 143,

177, 211, 244, 278, 312, 346, 379, 413, 447,
481, 514, 548, 582, 616, 649, 683, 717, 751,
784, 818, 852, 886, 919, 953, 987, 1021, 1054,
1088, 1122, 1156, 1189, 1223, 1257, 1291,
1324, 1358, 1392, 1426, 1459, 1493, 1527,
1561, 1594, 1628, 1662, 1696, 1729, 1763,
1797, 1831, 1864, 1898, 1932, 1966, 1999,
2033, 2067, 2101, 2134, 2168, 2202, 2236,
2269, 2303, 2337, 2371, 2404, 2438, 2472,
2506, 2539, 2573, 2607, 2641, 2674, 2708,
2742, 2776, 2809, 2843, 2877, 2911, 2944,
2978, 3012, 3046, 3079, 3113, 3147, 3181,
3214, 3248, 3282, 3316, 3349, 3383, 3417,
3451, 3484, 3518, 3552, 3586, 3619, 3653,
3687, 3721, 3754, 3788, 3822, 3856, 3889,
3923, 3957, 3991, 4024, 4058, 4092, 4126,
4159, 4193, 4227, 4261, 4294, 4328, 4362,
4396, 4429, 4463, 4497, 4531, 4564, 4598,
4632, 4666, 4699, 4733, 4767, 4801, 4834,
4868, 4902, 4936, 4969, 5003, 5037, 5071,
5104, 5138, 5172, 5206, 5239, 5273, 5307,
5341, 5374, 5408, 5442, 5476, 5509, 5543,
5577, 5611, 5644, 5678, 5712, 5746, 5779,
5813, 5847, 5881, 5914, 5948, 5982, 6016,
6049, 6083, 6117, 6151, 6184, 6218, 6252,
6286, 6319, 6353, 6387, 6421, 6454, 6488,
6522, 6556, 6589, 6623, 6657, 6691, 6724,
6758, 6792, 6826, 6859, 6893, 6927, 6961,
6994, 7028, 7062, 7096, 7129, 7163, 7197,
7231, 7264, 7298, 7332, 7366, 7399, 7433,
7467, 7501, 7534, 7568, 7602, 7636, 7669,
7703, 7737, 7771, 7804, 7838, 7872, 7906,
7939, 7973, 8007, 8041, 8074, 8108, 8142,
8176, 8209, 8243, 8277, 8311, 8344, 8378,
8412, 8446, 8479, 8513, 8547, 8581, 8614,
8648, 8682, 8716, 8749, 8783, 8817, 8851,
8884, 8919, 8954, 8990, 9026, 9091

E
EwayIntegration (built-in class), 40, 74, 107, 141, 175,

209, 242, 276, 310, 344, 377, 411, 445, 479,
512, 546, 580, 614, 647, 681, 715, 749, 782,
816, 850, 884, 917, 951, 985, 1019, 1052, 1086,
1120, 1154, 1187, 1221, 1255, 1289, 1322,
1356, 1390, 1424, 1457, 1491, 1525, 1559,
1592, 1626, 1660, 1694, 1727, 1761, 1795,
1829, 1862, 1896, 1930, 1964, 1997, 2031,
2065, 2099, 2132, 2166, 2200, 2234, 2267,
2301, 2335, 2369, 2402, 2436, 2470, 2504,
2537, 2571, 2605, 2639, 2672, 2706, 2740,
2774, 2807, 2841, 2875, 2909, 2942, 2976,
3010, 3044, 3077, 3111, 3145, 3179, 3212,
3246, 3280, 3314, 3347, 3381, 3415, 3449,
3482, 3516, 3550, 3584, 3617, 3651, 3685,
3719, 3752, 3786, 3820, 3854, 3887, 3921,
3955, 3989, 4022, 4056, 4090, 4124, 4157,
4191, 4225, 4259, 4292, 4326, 4360, 4394,
4427, 4461, 4495, 4529, 4562, 4596, 4630,
4664, 4697, 4731, 4765, 4799, 4832, 4866,
4900, 4934, 4967, 5001, 5035, 5069, 5102,
5136, 5170, 5204, 5237, 5271, 5305, 5339,
5372, 5406, 5440, 5474, 5507, 5541, 5575,
5609, 5642, 5676, 5710, 5744, 5777, 5811,
5845, 5879, 5912, 5946, 5980, 6014, 6047,
6081, 6115, 6149, 6182, 6216, 6250, 6284,
6317, 6351, 6385, 6419, 6452, 6486, 6520,
6554, 6587, 6621, 6655, 6689, 6722, 6756,
6790, 6824, 6857, 6891, 6925, 6959, 6992,
7026, 7060, 7094, 7127, 7161, 7195, 7229,
7262, 7296, 7330, 7364, 7397, 7431, 7465,
7499, 7532, 7566, 7600, 7634, 7667, 7701,
7735, 7769, 7802, 7836, 7870, 7904, 7937,
7971, 8005, 8039, 8072, 8106, 8140, 8174,
8207, 8241, 8275, 8309, 8342, 8376, 8410,
8444, 8477, 8511, 8545, 8579, 8612, 8646,
8680, 8714, 8747, 8781, 8815, 8849, 8882,
8917, 8952, 8988, 9024, 9089

9109

Merchant Documentation Documentation, Release 0.09a

R
request_access_code() (built-in function), 40, 74, 107,

141, 175, 209, 242, 276, 310, 344, 377, 411,
445, 479, 512, 546, 580, 614, 647, 681, 715,
749, 782, 816, 850, 884, 917, 951, 985, 1019,
1052, 1086, 1120, 1154, 1187, 1221, 1255,
1289, 1322, 1356, 1390, 1424, 1457, 1491,
1525, 1559, 1592, 1626, 1660, 1694, 1727,
1761, 1795, 1829, 1862, 1896, 1930, 1964,
1997, 2031, 2065, 2099, 2132, 2166, 2200,
2234, 2267, 2301, 2335, 2369, 2402, 2436,
2470, 2504, 2537, 2571, 2605, 2639, 2672,
2706, 2740, 2774, 2807, 2841, 2875, 2909,
2942, 2976, 3010, 3044, 3077, 3111, 3145,
3179, 3212, 3246, 3280, 3314, 3347, 3381,
3415, 3449, 3482, 3516, 3550, 3584, 3617,
3651, 3685, 3719, 3752, 3786, 3820, 3854,
3887, 3921, 3955, 3989, 4022, 4056, 4090,
4124, 4157, 4191, 4225, 4259, 4292, 4326,
4360, 4394, 4427, 4461, 4495, 4529, 4562,
4596, 4630, 4664, 4697, 4731, 4765, 4799,
4832, 4866, 4900, 4934, 4967, 5001, 5035,
5069, 5102, 5136, 5170, 5204, 5237, 5271,
5305, 5339, 5372, 5406, 5440, 5474, 5507,
5541, 5575, 5609, 5642, 5676, 5710, 5744,
5777, 5811, 5845, 5879, 5912, 5946, 5980,
6014, 6047, 6081, 6115, 6149, 6182, 6216,
6250, 6284, 6317, 6351, 6385, 6419, 6452,
6486, 6520, 6554, 6587, 6621, 6655, 6689,
6722, 6756, 6790, 6824, 6857, 6891, 6925,
6959, 6992, 7026, 7060, 7094, 7127, 7161,
7195, 7229, 7262, 7296, 7330, 7364, 7397,
7431, 7465, 7499, 7532, 7566, 7600, 7634,
7667, 7701, 7735, 7769, 7802, 7836, 7870,
7904, 7937, 7971, 8005, 8039, 8072, 8106,
8140, 8174, 8207, 8241, 8275, 8309, 8342,
8376, 8410, 8444, 8477, 8511, 8545, 8579,
8612, 8646, 8680, 8714, 8747, 8781, 8815,
8849, 8882, 8917, 8953, 8988, 9024, 9089

9110 Index

	Welcome to Merchant's documentation!
	Welcome to Merchant's documentation!
	Indices and tables
	Merchant: Pluggable and Unified API for Payment Processors
	Overview
	Installing Merchant
	Credit Card
	Gateways
	On-site Processing
	Authorize.Net Gateway
	Beanstream
	Bitcoin Gateway
	Braintree Payments Server to Server
	Chargebee
	eWay Gateway
	Paylane Gateway
	PayPal Gateway
	Stripe Payments
	WePay Payments
	Off-site Processing
	PayPal Website Payments Standard
	WorldPay
	Amazon Flexible Payment Service
	Braintree Payments Transparent Redirect
	Stripe Payment Integration
	eWAY Payment Integration
	Authorize.Net Direct Post Method
	Signals
	Writing a new gateway
	Customizing Merchant
	Contributing to Merchant
	Changes

	Indices and tables
	Merchant: Pluggable and Unified API for Payment Processors
	Overview
	Installing Merchant
	Post-installation
	Configuration
	Running the Test Suite

	Credit Card
	Attribute Reference
	Method Reference
	Subclasses

	Gateways
	Attribute Reference
	Method Reference
	Helper functions

	On-site Processing
	Authorize.Net Gateway
	Usage

	Beanstream
	Example:

	Bitcoin Gateway
	Usage

	Braintree Payments Server to Server
	Example:

	Chargebee
	Example:

	eWay Gateway
	Usage

	Paylane Gateway
	Example:

	PayPal Gateway
	Usage

	Stripe Payments
	Example:

	WePay Payments
	Example:

	Off-site Processing
	Integration

	PayPal Website Payments Standard
	Test or Live Mode
	Example

	WorldPay
	Example

	Amazon Flexible Payment Service
	Example

	Braintree Payments Transparent Redirect
	Example:

	Stripe Payment Integration
	Example:

	eWAY Payment Integration
	Example:

	Authorize.Net Direct Post Method
	Example:

	Signals
	Writing a new gateway
	Customizing Merchant
	Contributing to Merchant
	Changes
	0.4 (upcoming)
	0.3
	0.2
	0.1
	0.09
	0.08
	0.07
	0.06
	0.05
	0.04
	0.03
	0.02
	0.01

	Indices and tables

